M.E. Structural Engineering CURRICULUM AND SYLLABI

I to IV Semesters

Regulation - 2020

ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Accredited by NBA and NAAC with "A+"and Recognized by UGC (2f&12B)

KOMARAPALAYAM - 637303

www.excelinstitutions.com

EXCEL ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai Accredited by NBA, NAAC with "A⁺" and Recognised by UGC (2f &12B) KOMARAPALAYAM – 637303

DEPARTMENT OF CIVIL ENGINEERING M.E STRUCTURAL ENGINEERING REGULATION 2020 CHOICE BASED CREDIT SYSTEM I TO IV SEMESTER CURRICULUM

	•	SEMESTER								
0.4	0	0-1	Perio	Periods /Week			Maximum Mark			
Sub code	Course	Category	L	T P		С	CA	FE	Total	
Theory Cou	rse (s)									
20PMA101	Advanced Mathematical Methods	FC	3	2	0	4	40	60	100	
20PSE101	Advanced Concrete Structures	PC	3	0	0	3	40	60	100	
20PSE102	Structural Dynamics	PC	3	0	0	3	40	60	100	
20PSE103	Theory of Elasticity and Plasticity	PC	3	0	0	3	40	60	100	
20PSEEXX	Professional Elective I	PE	3	0	0	3	40	60	100	
20PSEEXX	Professional Elective II	PE	3	0	0	3	40	60	100	
		Total	18	2	0	19	240	360	600	

	SE	MESTER I	l						
Sub code	Course	Category	Perio	Periods /Week		С	Max	cimum	Marks
oub couc	oourse .	Odlogory	L	Т	Р		CA	FE	Total
Theory Cou	rse (s)								
20PSE201	Advanced Steel Structures	PC	3	2	0	4	40	60	100
20PSE202	Stability of Structures	PC	3	0	0	3	40	60	100
20PSE203	Experimental Techniques and Model Analysis	PC	3	0	0	3	40	60	100
20PSE204	Finite Element Analysis	PC	3	0	0	3	40	60	100
20PSEEXX	Professional Elective III	PE	3	0	0	3	40	60	100
20PSEEXX	Professional Elective IV	PE	3	0	0	3	40	60	100
Practical Co	ourse								
20PSE205	Advanced Structural Engineering Laboratory	PC	0	0	6	3	50	50	100
Employability	y Enhancement Course								
20PSE206	Industrial Training – I	EEC	(2	Weel	(s)	1	50	50	100
		Total	18	2	6	23	440	460	900

	SEMESTER III										
Sub code	Course	Category Periods /Week C		Periods /Week			Maximum Marks				
	304 .50		L	Т	Р)	CA	FE	Total		
Theory Cour	rse (s)										
20PEE301	Research Methodology and Intellectual Property Rights	PC	3	0	0	3	40	60	100		
20PSEEXX	Professional Elective V	PE	3	0	0	3	40	60	100		
20PSEEXX	Professional Elective VI	PE	3	0	0	3	40	60	100		
Employability	/ Enhancement Course										
20PSE301	Project work (Phase I)	EEC	0	0	12	6	50	50	100		
20PSE302 Industrial Training II EEC (2 Weeks)							100	0	100		
	TOTAL 9 0 12 16 270 230 50								500		

	SEMESTER-IV										
Sub code Course Category Periods / Week C Maximus								imum	Marks		
	33 33		L	Т	Р		CA	FE	Total		
Employability	y Enhancement Course										
20PSE401	Project work (Phase II)	EEC	0	0	24	12	50	50	100		
TOTAL 0 0 24 12 50 50 100											

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE = 70 CREDIT SUMMARY

S.No	CATEGORY	CF	REDITS PEI	R SEMESTE	ER .	TOTAL	CREDITS
		I	II	III	IV	CREDIT	IN %
1	FC	4				4	5.7
2	PC	9	16	3		28	40.0
3	PE	6	6	6		18	25.7
4	EEC		1	7	12	20	28.6
	TOTAL	19	23	16	12	70	100.0

FC - Foundation Course

PC - Professional Core

PE - Professional Electives

EEC - Employability Enhancement Courses

MC - Mandatory Courses (Non-Credit Courses)

CA - Continuous Assessment

FE - Final Examination

	PROFESSIONAL ELECTIVE I& II										
	SEMESTER I										
Sub code	•	Maxi	mum	Marks							
			L	Т	Р	С	CA	FE	Total		
20PSEE01	Maintenance and Rehabilitation of Structures	PE	3	0	0	3	40	60	100		
20PSEE02	Prefabricated Structures	PE	3	0	0	3	40	60	100		
20PSEE03	Offshore Structures	PE	3	0	0	3	40	60	100		
20PSEE04	Matrix Methods for Structural Analysis	PE	3	0	0	3	40	60	100		

	PROFESSION	AL ELECTI	VES	III &	IV						
	SEMESTER II										
Sub code Course Category Periods /Week Maximum Ma											
			L	Т	Р	O	CA	FE	Total		
20PSEE11	Theory of Plates	PE	3	0	0	3	40	60	100		
20PSEE12	Mechanics of Composite Materials	PE	3	0	0	3	40	60	100		
20PSEE13	Analysis and Design of Tall Buildings	PE	3	0	0	3	40	60	100		
20PSEE14	Industrial Structures	PE	3	0	0	3	40	60	100		
20PSEE15	Prestressed Concrete	PE	3	0	0	3	40	60	100		
20PSEE16	Wind and Cyclone Effects on Structures	PE	3	0	0	3	40	60	100		

PROFESSIONAL ELECTIVES V& VI **SEMESTER III** Category Periods /Week **Maximum Marks** Sub code Course C Ρ L Т CA FΕ Total Nonlinear Analysis of 20PSEE21 PΕ 3 0 0 3 40 60 100 Structures **20PSEE22** Design of Sub Structures PΕ 0 0 40 3 3 60 100 20PSEE23 **Optimization of Structures** PΕ 0 0 3 3 40 60 100 Design of Steel Concrete 20PSEE24 PΕ 0 40 3 0 3 60 100 Composite Structures **20PSEE25** Design of Bridges PΕ 3 0 0 3 40 60 100 Design of Shell and Spatial **20PSEE26** PΕ 3 0 0 3 40 60 100 Structures Computer Aided Analysis and 20PSEE27 PΕ 3 0 0 3 40 60 100 Design **20PSEE28** Design of Formwork PΕ 0 0 3 40 3 60 100 Earthquake analysis and 20PSEE29 PΕ 0 0 40 3 3 60 100 design of structures

20PMA101	Advanced Mathematical Methods	L	T	Р	С
ZOI WATOT	Advanced mathematical methods	3	2	0	4
Nature of Course	Foundation Courses				
Pre requisites	Basic Mathematics				

The course is intended to

- 1. The main objective of this course is to provide the student with a repertoire of mathematical methods that are essential to the solution of advanced problems encountered in the fields of applied physics and engineering.
- 2. This course covers a broad spectrum of mathematical techniques such as Laplace Transform, Fourier Transform, Calculus of Variations, Conformal Mapping and Tensor Analysis. Application of these topics to the solution of problems in physics and engineering is stressed.
- 3. Find the minima or extreme of some quantity over a system that has functional degrees of freedom
- 4. The aim of the course is to teach the principal techniques and methods and analytic and geometric function theory
- 5. Expose student to mathematical applications of vector and tensor to handle diverse problems which occur in real life situation

Course Outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Blooms Level
CO1	Application of Laplace and Fourier transforms to initial value, initial boundary value and boundary value problems in Partial Differential Equations.	Understand
CO2	Maximizing and minimizing the functional that occur in various branches of Engineering Disciplines	Apply
CO3	Construct conformal mappings between various domains and use of conformal mapping in studying problems in physics and engineering particularly to fluid flow and heat flow problems.	Apply
CO4	Understand tensor algebra and its applications in applied sciences and engineering and develops ability to solve mathematical problems involving tensors.	Apply
CO5	Competently use tensor analysis as a tool in the field of applied scienc related fields.	Analyze

Course Contents:

Unit – I Laplace Transform Techniques for Partial Differential Equations

12

Laplace transform: Definitions – Properties – Transform error function – Bessel's function - Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation.

Unit - II Fourier Transform Techniques For Partial differential equations

12

Fourier transform: Definitions – Properties – Transform of elementary functions – Dirac delta function – Convolution theorem – Parseval's identity – Solutions to partial differential equations Heat equation – Wave equation – Laplace and Poisson's equations.

Unit- III Calculus of Variations

12

Concept of variation and its properties – Euler's equation– Functional dependant on first and higher order derivatives– Functional dependant on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems – Direct methods – Ritz and Kantorovich methods.

Unit - IV Conformal Mapping And Applications

Introduction to conformal mappings and bilinear transformations – Schwarz Christoffel transformation Transformation of boundaries in parametric form – Physical applications : Fluid flow and heat flow problems.

Unit - V Tensor Analysis

12

Summation convention – Contra variant and covariant vectors – Contraction of tensors – Inner product – Quotient law Metric tensor – Christoffel symbols – Covariant differentiation – Gradient - Divergence and curl

Total: 60 Periods

- 1. Mathews, J. H., and Howell, R.W., "Complex Analysis for Mathematics and Engineering", 5 th Edition, Jones and Bartlett Publishers, 2006.
- 2. Naveen Kumar, "An Elementary Course on Variational Problems in Calculus ", Narosa Publishing House, 2005.
- 3. Ramaniah. G. "Tensor Analysis", S. Viswanathan Pvt. Ltd., 1990.
- Saff, E.B and Snider, A.D, "Fundamentals of Complex Analysis with Applications in Engineering, Science and Mathematics", 3rd Edition, Pearson Education, New Delhi, 2014.
- 5. Sankara Rao, K., "Introduction to Partial Differential Equations", Prentice Hall of India Pvt. Ltd., New Delhi, 1997.
- 6. Spiegel, M.R., "Theory and Problems of Complex Variables and its Applications", Schaum's Outline Series, McGraw Hill Book Co.,1981
- 7. Andrews L.C. and Shivamoggi, B., "Integral Transforms for Engineers", Prentice Hall of India Pvt. Ltd., New Delhi, 2003.
- 8. Elsgolc, L.D., "Calculus of Variations", Dover Publications Inc., New York, 2007.
- 9. Kay, D. C., "Tensor Calculus", Schaum's Outline Series, Tata McGraw Hill Edition, 2014

Мар	ping of	Cours	e Outc		(COs) ecific					tcome	s (PC	s) Pro	gramm	ne
CO2								РО	s				PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	3								1	3	1
CO2	3	3	2	3								1	3	1
CO3	3	3	2	3								1	3	1
CO4	3	3	2	3								1	3	1
CO5	3	3	2	3									3	1
			3 - High)	2 - Medium 1 - Low						•			

	Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks					
Remember	Classroom or Online Quiz	5						
Understand	Class Presentation/Assignments	5	15					
	Attendance	5						

	Summa	tive Assessme	nt	
	Continuous	Assessment T	ests	Final
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)
Remember	0	0	0	0
Understand	10	10	10	20
Apply	20	20	20	40
Analyse	10	10	10	20
Evaluate	10	10	10	10
Create	0	0	0	0

20PSE101	Advanced Concrete Structures	L	T 0	P 0	C
Nature of Course	Professional Core				
Pre requisites	Analyzing and design the structural elements				

The course is intended

- 1. To make the students be familiar with the limit state design of RCC beams, slabs and columns
- 2. To design special structures such as RC walls, Deep beams, Corbels and Grid floors
- 3. To make the students confident to design the flats lab as per Indian standard, yield line theory and strip method.
- 4. To make the students to be aware on inelastic behavior of concrete beam and column
- 5. To design the beams based on limit analysis and detail the beams, columns and joints for ductility

Course Outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Understand how the constituents and mix proportions of concrete influence its early age properties, Mechanical properties, volume changes and durability, via an appreciation of their influence on concrete micro structure.	Understand
CO2	Gain the ability to design RC walls, Corbels, grid floors and proportion concrete mixtures to a specified performance	Analyse
CO3	Become familiar with design of flat slab as per IS method, yield line their and strip method	Analyse
CO4	Gains the knowledge on inelastic on inelastic behavior of concrete beams and columns	Understand
CO5	Design various concrete structures and structural elements by limit state design and detail the same for ductility as per codal requirements.	Analyse

Course Contents:

Unit – I Design Philosophy

Ĉ

Limit state design - beams, slabs and columns according to IS Codes. Calculation of deflection and crack width according to IS Code. interaction curve generation for axial force and bending

Unit - II Design of Special RC Elements

9

Design of slender columns - Design of RC walls. Strut and tie method of analysis for corbels and deep beams, Design of corbels, Deep-beams and grid floors.

Unit - III Flat Slabs and Yield Line Based Design

9

Design of flat slabs and flat plates according to IS method – Check for shear - Design of spandrel beams – Yield line theory and Hillerborg's strip method of design of slabs.

Unit - IV Inelastic Behavior of Concrete Beams and Columns

(

Inelastic behaviour of concrete beams and Baker's method, moment - rotation curves, ductility definitions, Evaluation

Unit - V Ductile Detailing

Concept of Ductility – Detailing for ductility – Design of beams, columns for ductility - Design of cast-in-situ joints in frames.

Total: 45 periods

9

- 1. Gambhir.M. L., "Design of Reinforced Concrete Structures", Prentice Hall of India, 2012.
- 2. Purushothaman, P, "Reinforced Concrete Structural Elements: Behaviour Analysis and Design", Tata McGraw Hill,1986
- 3. Unnikrishna Pillai and Devdas Menon "Reinforced Concrete Design', Third Edition, Tata McGraw Hill Publishers Company Ltd., New Delhi, 2007.
- 4. Varghese, P.C, "Advanced Reinforced Concrete Design", Prentice Hall ofIndia, 2005.
- 5. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall ofIndia, 2007.
- 6. M.S. Shetty, Concrete Technology, S. Chand & Co., 2005
- 7. Raft Siddique, Spacial Structural Concrete, Galgotia Publication, 2000
- 8. Krishna Raju, Design of Concrete Mixes, C.B.S. Publication, 2002
- 9. Sadhu Singh, Experimental Stress Analysis, Khanna Publishers, New Delhi, 2006.
- J. W. Dally and W. F. Riley, Experimental Stress Analysis, McGraw-Hill, Inc. New York, 1978

Мар	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
Cos		POs										P:	SOs	
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3									2		2
CO2	3	2	3									2		2
CO3	3	2	3									2		2
CO4	3	2	3									2		2
CO5	3	2	3									2		2
	3 - High 2 - Medium 1 - Low													

	Formative assessment						
Bloom's Level	Assessment Component	Marks	Total marks				
Remember	Classroom or Online Quiz	5					
Understand	Class Presentation/Assignments	5	15				
	Attendance	5					

	Summative Assessment									
	Continuous	Continuous Assessment Tests								
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)						
Remember	0	0	0	0						
Understand	10	10	10	20						
Apply	20	20	20	40						
Analyse	10	10	10	20						
Evaluate	10	10	10	10						
Create	0	0	0	0						

200000402	Standard Dimension	L	T	Р	С
20PSE102	Structural Dynamics	3	0	0	3
Nature of Cou	rse Professional Core				
Pre requisites	Structural Analysis				

The course is intended

- To expose the students the principles and methods of dynamic analysis of structures
- 2. To make the student familiar on two degrees of freedom systems
- 3. To make the students confident on structural dynamic response of multi degree of freedom system
- 4. To make the students aware on dynamic response of continues system
- 5. To make the students to understand the direct integration methods for dynamic response

Course Outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Be familiar with the principles and methods of dynamic analysis of structures	Understand
CO2	Prepare them for design the structures for wind, earthquake and other dynamic loads.	Analyse
CO3	Design the structures with all kind of loads	Analyse
CO4	Prepare them design the structures and develop with the mathematical models	Analyse
CO5	Prepare them to understand the techniques of direct integration and applications in the design of structures	Analyse

Course Contents:

Unit- I Principles of Vibration Analysis

ç

Mathematical models of single degree of freedom systems - Free and forced vibration of SDOF systems, Response of SDOF to special forms of excitation, Effect of damping, Transmissibility applications-examples related to structural engineering

Unit II Two Degree Of Freedom Systems

(

Mathematical models of two degree of freedom systems, free and forced vibrations of two degree of freedom systems, normal modes of vibration, applications

Unit- III Dynamic Response of Multi-Degree of freedom Systems

9

Mathematical models of Multi-degree of freedom systems, orthogonality of normal modes, free and forced vibrations of multi degree of freedom systems, Mode superposition technique, response spectrum method, Applications.

Unit - IV Dynamic Response of Continuous Systems

C

Mathematical models of continuous systems, Free and forced vibration of continuous systems, Rayleigh – Ritz Method – Formulation using Conservation of Energy – Formulation using Virtual Work, Applications.

Unit – V Direct Integration Methods for Dynamic Response

Damping in MDOF systems, Nonlinear MDOF systems, step-by-step numerical integration algorithms, substructure technique, Applications.

Total: 45 periods

9

- 1. Anil K.Chopra, Dynamics of Structures, Pearson Education,5th Edition 2017.
- 2. Leonard Meirovitch, Elements of Vibration Analysis, McGraw Hill, 2017, IOS Press, 2006.
- 3. Mario Paz, Structural Dynamics -Theory and Computation, Kluwer Academic Publishers, 2ND Edition 2004.
- 4. Roy R.Craig, Jr, Andrew J. Kurdila, Fundamentals of Structural Dynamics, John Wiley & Sons, 2011.

	POs											PS	Os
1	2	3	4	5	6	7	8	9	10	11	12	1	2
3	3	2	3		2						1	2	1
3	3	2	3		2						1	2	1
3	3	2	3		2						1	2	1
3	3	2	3		2						1	2	1
3	3	2	3		2						1	2	1
	3 3 3 3	3 3 3 3 3 3 3 3	3 3 2 3 3 2 3 3 2 3 3 2	3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3	3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3	1 2 3 4 5 6 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2	1 2 3 4 5 6 7 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2	1 2 3 4 5 6 7 8 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3	1 2 3 4 5 6 7 8 9 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3	1 2 3 4 5 6 7 8 9 10 3 3 2 3 2 3 2 3 3 3 2 3 2 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 </td <td>1 2 3 4 5 6 7 8 9 10 11 3 3 2 3 2 3 2 3 3 3 2 3 2 3 2 3 3 3 3 2 3 2 3 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 4 3 4<</td> <td>1 2 3 4 5 6 7 8 9 10 11 12 3 3 2 3 2 3 1</td> <td>1 2 3 4 5 6 7 8 9 10 11 12 1 3 3 2 3 2 3 2 1 2 3 3 2 3 2 3 2 1 2 3 3 2 3 2 3 2 1 2 3 3 2 3 2 3 1 2</td>	1 2 3 4 5 6 7 8 9 10 11 3 3 2 3 2 3 2 3 3 3 2 3 2 3 2 3 3 3 3 2 3 2 3 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 4 3 4<	1 2 3 4 5 6 7 8 9 10 11 12 3 3 2 3 2 3 1	1 2 3 4 5 6 7 8 9 10 11 12 1 3 3 2 3 2 3 2 1 2 3 3 2 3 2 3 2 1 2 3 3 2 3 2 3 2 1 2 3 3 2 3 2 3 1 2

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Class Presentation or Tutorial Class	5	
Understand	Assignment/Power point presentation	5	15
	Attendance	5	

	Summative Assessment										
	Continu	Final									
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)							
Remember	10	10	10	20							
Understand	10	10	10	20							
Apply	0	0	0	0							
Analyse	20	20	20	40							
Evaluate	10	10	10	20							
Create	0	0	0	0							

20PSE103		Theory of Elasticity and Plasticity	L 3	T 0	P 0	C
Nature of Co	urse	Professional Core				
Pre requisite	S	Material Science	•			

The course is intended

- 1. To understand the concept of Elasticity
- 2. To familiarize the 2D stress strain problems
- 3. To study the torsion of non circular sections
- 4. To impact knowledge on the concept of elastic analysis in beams of elastic formula
- 5. To understand the concept of plasticity

Course Outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Understand the concept of elastic analysis of plane stress and plane strain problems.	Understand
CO2	Gains sufficient knowledge in various theories of failure and plasticity.	Understand
CO3	Apply the concepts of elasticity and plasticity to Torsion of Non Circular section	Apply
CO4	Apply the concept of elastic analysis in Beams on elastic foundation	Apply
CO5	Be familiar to the concept of Plastic analysis of plane stress and plane strain problems.	Understand

Course Contents:

Unit – I Elasticity

9

Analysis of stress and strain, Equilibrium Equations - Compatibility Equations - Stress Strain Relationship. Generalized Hooke's law.

Unit - II 2d Stress Strain Problems

9

Plane stress and plane strain - Simple two dimensional problems in Cartesian and Polar Coordinates

Unit - III Torsion of Non-Circular Section

9

St. Venant's approach - Prandtl's approach - Membrane analogy - Torsion of Thin Walled- Open and Closed sections-Design approach to open web section subjected to torsion

Unit- IV Beams on Elastic Foundations

(

Beams on Elastic foundation – Methods of analysis – Elastic line method – Idealization of soil medium – Winkler model – Infinite beams – Semi infinite and finite beams – Rigid and flexible – Uniform Cross Section – Point load and UDL – Solution by Finite Differences.

Unit - V Plasticity

9

Physical Assumptions – Yield Criteria – Failure Theories – Applications of Thick Cylinder – Plastic Stress Strain Relationship. Elasto-Plastic Problems in Bending and Torsion.

Total: 45 periods

- 1. Chakrabarty.J, "Theory of Plasticity", Third Edition, Elsevier Butterworth Heinmann UK,2007.
- 2. Jane Helena H, "Theory of Elasticity and Plasticity", PHI Learning Pvt. Ltd., 2016.
- 3. Ansel.C.Ugural and Saul.K.Fenster, "Advanced Strength and Applied Elasticity," Fourth Edition, Prentice Hall Professional technical Reference, New Jersy, 2003.
- 4. Slater R.A.C, "Engineering Plasticity", John Wiley and Son, New York, 1977.
- 5. Timoshenko, S. and GoodierJ.N."Theory of Elasticity", McGraw Hill Book Co., NewYork,2010.

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
		POs												Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2		3		2							2	
CO2	3	2		3		2							2	
CO3	3	2		3		2							2	
CO4	3	2		3		2							2	
CO5	3	2		3		2							2	
	3 - High					2 - Medium 1 - Low								

	Formative assessment									
Bloom's Level	Assessment Component	Marks	Total marks							
Remember	Class Presentation or Tutorial Class	5								
Understand	Assignment/Power point presentation	5	15							
	Attendance	5								

Summative Assessment										
	Continu	Final								
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)						
Remember	10	10	10	20						
Understand	10	10	10	20						
Apply	20	20	20	40						
Analyse	0	0	0	0						
Evaluate	0	0	0	0						
Create	0	0	0	0						

II SEMESTER

20PSE201	Advanced Steel Structures	L 3	T 2	P 0	C
Nature of Co	rse Professional Core				
Pre requisites	Analyzing and design the Structural Steel Elements				

Course Objectives:

The course is intended

- 1. To impart knowledge on the design of members subjected to combined forces
- 2. To understand the design of connections.
- 3. To gain knowledge on analysis and design of industrial structures
- 4. To familiarize on the plastic analysis of structures
- 5. To understand the analysis and design of light gauge steel structures

Course Outcomes:

On successful completion of the course, the students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Design members subjected to combined forces	Create
CO2	Design the bolted and welded connections	Create
CO3	Analyse all different load acting on structure and design the industrial building	Create
CO4	Analyse the plastic analysis of structure	Analyse
CO5	Analyse the light gauge steel sections and design by effective width method	Create

Course Contents:

Unit - I General 12

Design of members subjected to combined forces – Design of Purlins, Louver rails, Gable column and Gable wind girder – Design of simple bases, Gusseted bases and Moment Resisting Base Plates.

Unit - II Design of Connections

Types of connections – Welded and Bolted – Throat and Root Stresses in Fillet Welds – Seated Connections – Unstiffened and Stiffened seated Connections – Moment Resistant Connections – Clip angle Connections – Split beam Connections – Framed Connections HSFG bolted connections.

Unit - III Analysis And Design of Industrial Buildings

Analysis and design of different types of trusses – Analysis and design of industrial buildings – Sway and non sway frames – Aseismic design of steel buildings.

Unit - IV Plastic Analysis of Structures

Introduction, Shape factor, Moment redistribution, Combined mechanisms, Analysis of portal frames, Effect of axial force - Effect of shear force on plastic moment, Connections - Requirement - Moment resisting connections. Design of Straight Corner Connections - Haunched Connections - Design of continuous beams.

12

12

12

Unit - V Design of Light Gauge Steel Structures

Introduction to Direct Strength Method - Behaviour of Compression Elements - Effective width for load and deflection determination — Behaviour of Unstiffened and Stiffened Elements — Design of webs of beams — Flexural members — Lateral buckling of beams — Shear Lag — Flange Curling — Design of Compression Members — Wall Studs.

Total: 60 periods

- 1. Lynn S. Beedle, Plastic Design of Steel Frames, John Wiley and Sons, 1990.
- 2. Narayanan.R.etal., Teaching Resource on Structural steel Design, INSDAG, Ministry of Steel Publishing, 2000.
- 3. Subramanian.N, Design of Steel Structures, Oxford University Press, 2014.
- 4. Wie Wen Yu, Design of Cold Formed Steel Structures, McGraw Hill Book Company,1996
- 5. S. K. Duggal, Limit State Design of Steel Structures, McGraw Hill, 2014.
- 6. IS 800 -2007, General Construction in Steel -Code of Practice (Third revision).
- 7. IS811-1987, Specification for cold formed light gauge structural steel sections
- 8. IS 9178 (Part 1) -1989, Design and construction of steel chimney code of practice.
- 9. IS 9178 (Part 2) -1979, Criteria for design of steel bins for storage of bulk materials.

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
		POs											PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3			3						2		2
CO2	3	2	3			3						2		2
CO3	3	2	3			3						2		2
CO4	3	2	3			3						2		2
CO5	3	2	3			3						2		2
	3 - High					2 - Medium				1 - Low				

	Formative assessment:										
Bloom's Level	Assessment Component	Marks	Total marks								
Remember	Classroom or Online Quiz	5									
Understand	Class Presentation/Power point presentation	5	15								
	Attendance	5									

ummative Assessment:										
Bloom's Category	Continu	ous Assessme	Final							
2.com c category	IAE 1	IAE 2	IAE 3	Examination						
	(7.5)	(7.5)	(10)	(60)						
Remember	10	10	10	20						
Understand	10	10	10	20						
Apply	30	30	30	60						
Analyse	0	0	0	0						
Evaluate	0	0	0	0						
Create	0	0	0	0						

			L	Т	Р	С
20PSE202		Stability of Structure	3	0	0	3
Nature of Co	ourse	Professional Core				
Pre requisit	es	Analysis and design of Structures.				

The course is intended

- 1. To understand the states of equilibrium and buckling of columns
- 2. To impart Knowledge in phenomenon of buckling of beams, columns and frames
- 3. To understand the combined torsion and lateral buckling in beam / column joints
- 4. To gain knowledge on buckling of plates
- 5. To familiarize the concept of inelastic bucking of plates

Course Outcomes:

On successful completion of the course, the students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Identify the type of equilibrium and failure pattern in structures.	Analyse
CO2	Calculate the critical load of columns at different end conditions by various methods.	Evaluate
CO3	Analyse the torsional and lateral buckling in beam / column joints.	Analyse
CO4	Calculate the lateral buckling of plates by differential equations.	Evaluate
CO5	Identify the inelastic buckling of plates	Analyse

Course Contents:

Unit - I Buckling of Columns

States of equilibrium - Classification of buckling problems - concept of equilibrium, energy, imperfection and vibration approaches to stability analysis - Eigen value problem. Governing equation for columns - Analysis for various boundary conditions - using Equilibrium, Energy methods. Approximate methods - Rayleigh Ritz, Galerkins approach - Numerical Techniques - Finite difference method - Effect of shear on buckling.

Unit - II Buckling of Beam-Columns and Frames

Theory of beam column - Stability analysis of beam column with single and several concentrated loads, distributed load and end couples Analysis of rigid jointed frames with and without sway – Use of stability function to determine the critical load.

Unit - III Torsional and Lateral Buckling

Torsional buckling – Combined Torsional and flexural buckling - Local buckling. Buckling of Open Sections. Numerical solutions. Lateral buckling of beams, pure bending of simply supported and cantilever beams.

Unit- IV Buckling of Plates

Governing differential equation - Buckling of thin plates, various edge conditions -Analysis by equilibrium and energy approach – Finite difference method.

Unit - V Inelastic Buckling

Double modulus theory - Tangent modulus theory - Shanley's model - Eccentrically loaded inelastic column. Inelastic buckling of plates - Post buckling behaviour of plates.

Total: 45 periods

9

9

9

9

CHAIRMAN - BOARD OF STUDIES

- 1. Ashwini Kumar, "Stability Theory of Structures", Allied publishers Ltd., New Delhi, 2003.
- 2. Chajes, A. "Principles of Structures Stability Theory", Prentice Hall, 1974.
- 3. Gambhir, "Stability Analysis and Design of Structures", springer, New York, 2004.
- 4. Simitser.G.J and Hodges D.H, "Fundamentals of Structural Stability", Elsevier Ltd., 2006.
- 5. Timoshenko.S.P, and Gere.J.M, "Theory of Elastic Stability", McGraw Hill Book Company,1963.
 - A. Chajes, Principles of Structural Stability Theory, Prentice Hall, 2008.
- 6. N.G.R. Iyengar, Structural Stability of Columns and Plates, Affiliated East West press Pvt. Ltd, New Delhi -1988.
- 7. D.O.Brush, and B.O. Almorth, Buckling of Bars, Plates and Shells, McGraw Hill, 2006
- 8. M.S. El Naschies, Stress, Stability and Chaos in Structural Engineering: An Energy Approach, McGraw Hill International Editions, 1999

Марі	ping o	f Cour	se Ou				n Prog			comes	s (POs)) Progr	amme	9
						Р	Os						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3									2		2
CO2	3	3	3									2		2
CO3	3	3	3									2		2
CO4	3	3	3									2		2
CO5	3	3	3									2		2
	3 - H	- High 2 - Medium						1 - Low						

Formative assessment:									
Bloom's Level	Bloom's Level Assessment Component								
Remember	Classroom or Online Quiz	5							
Understand	Class Presentation/Power point presentation	5	15						
	Attendance	5							

	Summative Assessment:								
Bloom's Category	Continu	ous Assessme	Final						
,	IAE 1	IAE 2	IAE 3	Examination					
	(7.5)	(7.5)	(10)	(60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyse	0	0	0	0					
Evaluate	0	0	0	0					
Create	0	0	0	0					

20PSE203		Experimental Techniques and Madel Analysis	L	Т	Р	С
		Experimental Techniques and Model Analysis	3	0	0	3
Nature of Course		Professional Core				
Pre requisites	5	Smart materials				

The course is intended

- 1. To learn the principles of measurements of forces and strain
- 2. To understand the structural vibration, wind blow and its measurements
- 3. To impart knowledge on distress measurements and control
- 4. To familiarize on methods of non destructive testing
- 5. To gain knowledge on model analysis

Course Outcomes:

On successful completion of the course, the students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Know about measurement of Forces and strain	Understand
CO2	Know about measurement vibrations and wind blow.	Understand
CO3	Understand the distress measurements and control	Understand
CO4	Analyze the structure by non-destructive testing methods and model analysis.	Analyse
CO5	Gain knowledge of model analysis	Apply

Course Contents:

Unit - I Forces and Strain Measurement

ç

Choice of Experimental stress analysis methods, Errors in measurements - Strain gauge, principle, types, performance and uses. Photo elasticity - principle and applications - Hydraulic jacks and pressure gauges - Electronic load cells - Proving Rings - Calibration of Testing Machines - Long-term monitoring - vibrating wire sensors- Fiber optic sensors.

Unit - II Measurement of Vibration And Wind Flow

9

Characteristics of Structural Vibrations— Linear Variable Differential Transformer (LVDT) — Transducers for velocity and acceleration measurements. Vibration meter — Seismographs — Vibration Analyzer — Display and recording of signals — Cathode Ray Oscilloscope — XY Plotter — wind tunnels — Flow meters — Venturimeter — Digital data Acquisition systems.

Unit- III Distress Measurements and Control

9

Diagnosis of distress in structures – Crack observation and measurements – corrosion of reinforcement in concrete – Half cell, construction and use – damage assessment – controlled blasting for demolition – Techniques for residual stress measurements – Structural Health Monitoring.

Unit- IV Non Destructive Testing Methods

(

Load testing on structures, buildings, bridges and towers – Rebound Hammer – acoustic emission – ultrasonic testing Principles and application – Holography – use of laser for structural testing –Brittle coating, Advanced NDT methods – Ultrasonic pulse echo, Impact echo, impulse radar techniques, GECOR, Ground penetrating radar (GPR).

Unit- V Model Analysis

9

Model Laws – Laws of similitude – Model materials – Necessity for Model analysis – Advantages – Applications – Types of similitude – Scale effect in models – Indirect model study – Direct model study - Limitations of models – investigations – structural problems –Usage of influence lines in model studies.

Total: 45 Periods

CHAIRMAN - BOARD OF STUDIES

- Dalley .J. W and Riley. W. F, "Experimental Stress Analysis", McGraw Hill Book Company, N.Y.1991
- 2. Ganesan.T.P, "Model Analysis of Structures", University Press, India,2000.
- 3. Ravisankar.K. and Chellappan. A., "Advanced course on Non-Destructive Testing and
- 4. Evaluation of Concrete Structures", SERC, Chennai, 2007.
- 5. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2006.
- 6. Sirohi.R.S.,Radhakrishna.H.C,"MechanicalMeasurements",NewAgeIn ternational(P) Ltd. 1997

Мар	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
COs	COs POs						PS	Os						
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3			3							3	
CO2	3	2	3			3							3	
CO3	3	2	3			3							3	
CO4	3	2	3			3							3	
CO5	3	2	3			3							3	
	3 - High				2 - M	ediun	1			1 - L	.ow			

Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks				
Remember	Class Presentation or Tutorial Class	5					
Understand	Assignment/Power point presentation	5	15				
	Attendance	5					

	Summative Assessment:										
Bloom's Category	Continu	ous Assessme	Final								
	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)							
Remember	10	10	10	20							
Understand	10	10	10	20							
Apply	30	30	30	60							
Analyse	0	0	0	0							
Evaluate	0	0	0	0							
Create	0	0	0	0							

20PSE204	Finite Element Analysis	L	T 0	P 0	C
Nature of Course	Professional Core				
Pre requisites	Concept of Finite Element Techniques				

The course is intended

- 1. To understand the basics of the Finite Element Technique.
- 2. To understand the axial deformation of bars and spring elements
- 3. To impart knowledge on analysis of framed structures
- 4. To understand the concepts of analysis of plates and shells
- 5. To familiarize the students on applications of modeling and analysis using recent software's

Course Outcomes:

On successful completion of the course, the students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Gain knowledge about concept of finite element	Understand
CO2	Acquire knowledge on axial deformation of bars and springs	Understand
CO3	Analyse the framed structures	Analyse
CO4	Analyse thick plates and shells	Analyse
CO5	Gain knowledge on modeling and analysis using recent softwares	Analyse

Course Contents:

Unit - I Introduction

0

Approximate solutions of boundary value problems - Methods of weighted residuals, approximate solution using variation method, Modified Galerkin method, Boundary conditions and general comments-continuity, compatibility, convergence aspects. Basic finite element concepts - Basic ideas in a finite element solution, General finite element solution procedure, Finite element equations using modified Galerkin method

Unit - II Application : Axial Deformation of Bars, Axial Spring Element

9

Natural Coordinates - Triangular Elements -Rectangular Elements - Lagrange and Serendipity Elements -Solid Elements-Isoperimetric Formulation - Stiffness Matrix of Iso parametric Elements Numerical Integration: One, Two and Three Dimensional -Examples.

Unit - III Analysis of Framed Structures

9

Stiffness of Truss Member - Analysis of Truss -Stiffness of Beam Member-Finite Element Analysis of Continuous Beam -Plane Frame Analysis -Analysis of Grid and Space Frame – Two Dimensional Solids - Constant Strain Triangle -Linear Strain Triangle -Rectangular Elements - Numerical Evaluation of Element Stiffness -Computation of Stresses, Geometric Nonlinearity and Static Condensation - Ax symmetric Element -Finite Element Formulation of Ax symmetric Element-Finite Element Formulation for 3 Dimensional Elements – Solution for simple frames

Unit- IV Plates and Shells

9

Introduction to Plate Bending Problems - Finite Element Analysis of Thin Plate -Finite Element Analysis of Thick Plate -Finite Element Analysis of Skew Plate - Introduction to Finite Strip Method-Finite Element Analysis of Shell.

Unit - V Applications

9

Finite Elements for Elastic Stability - Dynamic Analysis - Nonlinear, Vibration and Thermal Problems - Meshing and Solution Problems - Modeling and analysis using recent software's.

Total: 45 periods

Reference books:

- 1. Bhavikatti.S.S, "Finite Element Analysis", New Age International Publishers, 2007.
- 2. Chandrupatla, R.T. and Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall of India,2007.
- 3. Rao.S.S, "Finite Element Method in Engineering", Butterworth Heinmann, UK,2008
- 4. Logan D. L., A First Course in the Finite Element Method, Thomson Learning, 2007.
- 5. R.D.Cook, Concepts and Applications of Finite Element Analysis, John Wiley&Sons.
- 6. David Hutton, "Fundamentals of Finite Element Analysis", Tata McGraw Hill Publishing Company Limited, New Delhi,2005

7.

Mapping	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
COs	POs							PS	Os					
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3			3							3	
CO2	3	3	3			3							3	
CO3	3	3	3			3							3	
CO4	3	3	3			3							3	
CO5	3	3	3			3							3	
	3 - H	igh				2 - M	ledium				1 - Lc)W		

	Formative assessment								
Bloom's Level	Marks	Total marks							
Remember	Class Presentation or Tutorial Class	5							
Understand	Assignment/Power point presentation	5	15						
	Attendance	5							

Summative Assessment									
	Continu	Continuous Assessment Tests							
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	20	20	20	40					
Analyse	10	10	10	20					
Evaluate	0	0	0	0					
Create	0	0	0	0					

20PSE205	Advanced Structural Engineering Laboratory	L 0	Т	Р	С			
201 3L203	Advanced Structural Engineering Laboratory	0	0	6	3			
Nature of Co	Nature of Course Professional Core							
Pre requisi	Basics of Strength of Materials and Concrete Lab							

The course is intended

- 1. To train the students for casting and testing of RC beams
- 2. To impart knowledge on strength and deflection of simply supported steel beams
- 3. To train the students for casting and testing of RC columns
- 4. To gain knowledge on the dynamic response of cantilever steel beams
- 5. To impart training on Non Destructive Test s on of concrete

Course Outcomes:

On completion of this laboratory course students will be able to

CO. No.	Course Outcome					
CO1	Cast and test RC beams for strength and deformation behaviour.	Apply				
CO2	Test simply supported steel beams for strength and deflection	Apply				
CO3	Cast and test RC columns subjected to concentric and eccentric loading	Apply				
CO4	Test the dynamic response of cantilever steel beams	Apply				
CO5	Conduct non destructive test on concrete	Apply				

Course Contents:

S.No	List of Exercises	CO Mapping	RBT
1	Fabrication, casting and testing of simply supported reinforced concrete beam for strength and deflection behaviour.	CO3	Understand
2	Testing of simply supported steel beam for strength and deflection behaviour.	CO3	Apply
3	Fabrication, casting and testing of reinforced concrete column subjected to concentric and eccentric loading.	CO3	Understand
4	Dynamic Response of cantilever steel beam To determine the damping coefficients from free vibrations. To evaluate the mode shapes.	CO2	Understand

5	Static cyclic testing of single bay two storied steel frames and (i) evaluates Drift of the frame. (ii) Stiffness of the frame. (iii) Energy dissipation capacity of the frame.	CO2	Understand
6	Non-Destructive Test on concrete i)Rebound hammer and ii) Ultrasonic Pulse Velocity Tester.	CO3	Apply

Reference Books:

1. Dally JW, and Riley WF, "Experimental Stress Analysis", McGraw-Hill Inc. New York, 1991.

Mapping	of Co	urse C	utcon	nes (C			ogram es (P		ıtcom	es (PO	s) Pro	gramn	ne Spe	ecific
						Р	Os						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	3									2		3
CO2	3	1	3									2		3
CO3	3	1	3									2		3
CO4	3	1	3									2		3
CO5	3	1	3									2		3
CO6	3	1	3									2		3
			3 - Hig	h			2 ·	- Medi	um			1 - L	OW	

Summative assessment based on Continuous and End Semester Examination							
Bloom's Level	Rubric based Continuous Assessment [50 marks]	End Semester Examination [50 marks]					
Remember	10	10					
Understand	10	10					
Apply	30	30					
Analyze	0	0					
Evaluate	0	0					
Create	0	0					

00005000	In descript Testistics 1	L	T	Р	С
20PSE206	Industrial Training - I	0	0	0	1
Nature of Cou	rse Professional Core				
Pre requisites	NA				

The course is intended

- 1. To train the students in the construction field related to Structural Engineering
- 2. To develop skills in preparing project report
- 3. To compare the theoretical and construction field practical knowledge
- 4. To understand the practical difficulties and find suitable solutions
- 5. To get industrial exposure of various construction projects.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Train in tackling a practical field/industry orientated problem related to Structural Engineering.	Apply
CO2	Get knowledge of preparing a project report	Apply
CO3	Gain the practical knowledge in addition to the theoretical knowledge	Apply
CO4	Face the practical difficulties and able to find the solution	Apply
CO5	Gain knowledge on various construction projects.	Apply

Course Contents:

- 1. The students individually undertake training in reputed Industries during the summer vacation for a specified period of two weeks.
- 2. At the end of training, a detailed report on the work done should be submitted within ten days from the commencement of the semester.
- 3. The students will be evaluated through a viva-voce examination by a team of internal staff.

Total: 2 Weeks

Mapping	of Co	urse C	Outcon	nes (C		ith Pro utcom			itcome	es (PO	s) Pro	gramm	e Spe	cific
		POs									PS	Os		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1						2	3	2	3	1			3	2
CO2						2	3	2	3	1			3	2
CO3						2	3	2	3	1			3	2
CO4						2	3	2	3	1			3	2
CO5						2	3	2	3	1			3	2
	3 - High 2 - Medium 1 - Low						W							

Formative assessment						
Bloom's Level	Assessment Component	Marks	Total marks			
Remember	Class Presentation or Tutorial Class	5				
Understand	Assignment/Power point presentation	5	15			
	Attendance	5				

Summative assessment based on Continuous and End Semester Examination								
Bloom's Level	Review 1 [50 marks]	Review 1 [50 marks]						
Remember	10	10						
Understand	10	10						
Apply	30	30						
Analyze	0	0						
Evaluate	0	0						
Create	0	0						

20PSEE01		Maintenance and Rehabilitation of Structures		T	Р	С
ZOI OLLOI		Maintenance and Kenabilitation of Structures				3
Nature of Course		Professional Core				
Pre requisites		Repair and Maintenance				

The course is intended

- 1. To impart knowledge on causes of distress in concrete..
- 2. To gain knowledge on causes, diagnosis and remedial measures for building cracks
- 3. To acquire knowledge on moisture penetration in structures and remedial treatments
- 4. To familiarize on distresses in concrete structures and remedial measures
- 5. To understand the strengthening existing of structures

Course Outcomes:

At the end of the course, students will be able to:

CO. No.	Course Outcome	Bloom's Level
CO1	Study the damages, repair and rehabilitation of structures.	Understand
CO2	Demonstrate the various types of distress in concrete structures.	Understand
CO3	Identify the effects due to climate, temperature, chemicals, wear and erosion on structures	Apply
CO4	Analyze the failures in structures due to design and construction errors	Analye
CO5	Suggest methods and techniques for repairing/ strengthening concrete structures	Understand

Course Contents:

Unit- I Introduction

9

General Consideration – Distresses monitoring – Causes of distresses – Quality assurance – Defects due to climate, chemicals, wear and erosion – Inspection – Structural appraisal – Economic appraisal.

Unit - II Building Cracks

9

Causes – diagnosis – Thermal and Shrinkage cracks – unequal loading – Vegetation and trees – Chemical action – Foundation movements – Remedial measures - Techniques for repair – Epoxy injection.

Unit- III Moisture Penetration

9

Sources of dampness – Moisture movement from ground – Reasons for ineffective DPC – Roof leakage – Pitched roofs – Madras Terrace roofs – Membrane treated roofs - Leakage of Concrete slabs – Dampness in solid walls – condensation – hygroscopic salts – remedial treatments – Ferro cement overlay – Chemical coatings – Flexible and rigid coatings.

Unit- IV Distresses and Remedies

9

Concrete Structures: Introduction – Causes of deterioration – Diagnosis of causes – Flow charts for diagnosis – Materials and methods of repair – repairing, spalling and disintegration – Repairing of concrete floors and pavements.

Steel Structures: Types and causes for deterioration – preventive measures – Repair procedure – Brittle fracture – Lamellar tearing – Defects in welded joints – Mechanism of corrosion – Design of protect against corrosion – Design and fabrication errors – Distress during erection.

Masonry Structures: Discoloration and weakening of stones – Biotical treatments – Preservation – Chemical preservatives – Brick masonry structures – Distresses and remedial measures.

Unit - V Strengthening of Existing Structures

General principle – relieving loads – Strengthening super structures – plating – Conversation to composite construction – post stressing – Jacketing – bonded overlays – Reinforcement addition – strengthening substructures – under pinning – Enhancing the load capacity of footing – Design for rehabilitation.

Total: 45 periods

- 1. Allen R.T and Edwards S.C, "Repair of Concrete Structures", Blakie and Sons, UK,1987
- 2. Dodge Woodson.R,"Concrete Structures protection, repair and rehabilitation", Elsevier Butterworth Heinmann, UK,2009.
- 3. Hand book on seismic retrofit of Building by CPWD and IITMadras, 2003.
- 4. Peter H.Emmons, "Concrete Repair and Maintenance Illustrated", Galgotia Publications Pvt. Ltd., 2001.
- 5. Raikar, R.N., "Learning from failures Deficiencies in Design, Construction and Service" Rand D Centre (SDCPL), RaikarBhavan, Bombay,1987.
- 6. Dayaratnam.P and Rao.R, "Maintenance and Durability of Concrete Structures", University Press, India,1997.
- 7. Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical, UK,1991.

Марі	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
COo		POs										PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3		2				1	2						3
CO2	3		2				1	2						3
CO3	3		2				1	2						3
CO4	3		2				1	2						3
CO5	3		2				1	2						3
3 - High			2 - Medium				1 - Low							

	Formative assessment									
Bloom's Level	Assessment Component	Marks	Total marks							
Remember	Classroom or Online Quiz	5								
Understand	Class Presentation/Power point presentation	5	15							
	5									

	Summative Assessment										
	Conti	Tests	Final								
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)							
Remember	10	10	10	20							
Understand	10	10	10	20							
Apply	30	30	30	60							
Analyse	0	0	0	0							
Evaluate	0	0	0	0							
Create	0	0	0	0							

20PSEE02	Prefabricated Structures	L	T	Р	С
		3	U	U	3
Nature of Course	Professional Core				
Pre requisites	Fabrication and Erection of prefabricated elements				

The course is intended

- 1. To learn the design principles of prefabricated structures
- 2. To impart Knowledge on prefabricated RC elements
- 3. To gain knowledge on prefabricated floors, slabs and roofs.
- 4. To familiarize on prefabricated wall panels
- 5. To know about the industrial buildings and shell roofs

Course Outcomes:

At the end of the course, the students will be able to:

CO. No.	Course Outcome	Bloom's Level		
CO1	Gain knowledge on principles of prefabricated structures	Understand		
CO2	Design prefabricated RC elements	Create		
CO3	Design prefabricated floor slabs, stairs and roofs	Create		
CO4	Design prefabricated wall panels	Create		
CO5	Design industrial structures and shell roofs	Create		

Course Contents:

Unit- I Design Principles

9

General Civil Engineering requirements, specific requirements for planning and layout of prefabrication plant. IS specifications. Modular co-ordination, standardization, Disuniting of Prefabricates, production, , erection, stages of loading and code provisions, safety factors material properties, Deflection control, Lateral load resistance, Location and types of shear walls.

Unit - II Reinforced Concrete

9

Prefabricated structures - Long wall and cross-wall large panel buildings, one way and two way prefabricated slabs, Framed buildings with partial and curtain walls, -Connections – Beam to column and column to column.

Unit- III Floors, Stairs And Roofs

9

Types of floor slabs, analysis and design example of cored and panel types and two-way systems, staircase slab design, types of roof slabs and insulation requirements, Description of joints, their behavior and reinforcement requirements, Deflection control for short term and long term loads, Ultimate strength calculations in shear and flexure.

Unit- IV Walls

Types of wall panels, Blocks and large panels, Curtain, Partition and load bearing walls, load transfer from floor to wall panels, vertical loads, Eccentricity and stability of wall panels, Design Curves, types of wall joints, their behaviour and design, Leak prevention, joint sealants, sandwich wall panels, approximate design of shear walls.

Unit - V Industrial Buildings and Shell Roofs

Ç

Components of single-storey industrial sheds with crane gantry systems, R.C. Roof Trusses, Roof Panels, corbels and columns, wind bracing design. Cylindrical, Folded plate and hyper-prefabricated shells, Erection and jointing, joint design, hand book based design.

Total: 45 Periods

CHAIRMAN - BOARD OF STUDIES

- 1. Koncz.T., Manual of Precast Concrete Construction, Vol.I II and III & IV Bauverlag, GMBH,1971.
- 2. Laszlo Mokk, Prefabricated Concrete for Industrial and Public Structures, AkademiaiKiado, Budapest, 2007.
- 3. Lewicki.B, Building with Large Prefabricates, Elsevier Publishing Company, Amsterdam/ London/New York,1998.
- 4. Structural Design Manual, Precast Concrete Connection Details, Society for the Studies in the use of Precase Concrete, Netherland BetorVerlag, 2009.
- 5. Warszawski, A., Industrialization and Robotics in Building A managerial approach, Harper and Row, 1990
- 6. L. Mokk, Prefabricated Concrete for Industrial and Public Structures, Publishing House of the Hungarian Academy of Sciences, Budapest, 2007.
- 7. Promyslow.V. Design and Erection of Reinforced Concrete Structures, MIR Publishers, Moscow1980.

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
COs						Р	Os						PS	Os
	1	1 2 3 4 5 6 7 8 9 10 11 12									1	2		
CO1	3		2									1	3	
CO2	3		2									1	3	
CO3	3		2									1	3	
CO4	3		2									1	3	
CO5	3		2									1	3	
	3 - H	3 - High 2 - Medium 1 - Low						1	1					

Formative Assessment:									
Bloom's Level	Assessment Component	Marks	Total marks						
Remember	Classroom or Online Quiz	5							
Understand	Class Presentation/Power point presentation	5	15						
	Attendance	5							

Summative Assessment										
	Continu	nt Tests	Final							
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)						
Remember	10	10	10	20						
Understand	10	10	10	20						
Apply	20	20	20	40						
Analyse	10	10	10	20						
Evaluate	0	0	0	0						
Create	0	0	0	0						

20PSEE03	Offshore Structures	L	Т	Р	С
201 02203	Onsilore off detailes	3	0	0	3
Nature of Co	urse Professional Core				
Pre requisite	S	•			

The course is intended

- 1. To learn about wave theories
- 2. To impart knowledge on forces acting on offshore structures
- 3. To develop offshore soil and structural models
- 4. To analyse offshore structures
- 5. To familiarize on design of offshore structures

Course Outcomes:

At the end of the course, the students will be able to:

CO. No.	Course Outcome	Bloom's Level
CO1	Understand the principle of wave theories.	Understand
CO2	Calculate various types of forces acting on the structures.	Evaluate
CO3	Classify and model the off shore structures.	Remember
CO4	Analyze the foundation of offshore structures using static and dynamic methods.	Analyse
CO5	Design the various types of offshore structures	Create

Course Contents:

Unit - I Wave Theories

9

Wave generation process, small, finite amplitude and nonlinear wave theories.

Unit - II Forces of Off Shore Structures

9

Wind forces, wave forces on small bodies and large bodies - current forces - Morison equation.

Unit III Offshore Soil and Structure Modeling

9

Different types of offshore structures, foundation modeling, fixed jacket platform structural modeling.

Unit- IV Analysis of Offshore Structures

9

Static method of analysis, foundation analysis and dynamics of offshore structures.

Unit - V Design of Off Shore Structures

9

Design of platforms, helipads, Jacket tower, analysis and design of mooring cables and pipelines.

Total: 45 Periods

- API RP 2A-WSD, Planning, Designing and Constructing Fixed Offshore Platforms -Working Stress Design - API Publishing Services, 2005
- 2. Chakrabarti, S.K., Handbook of Offshore Engineering by, Elsevier, 2005.
- 3. Chakrabarti, S.K., Hydrodynamics of Offshore Structures, WIT press, 2001.
- 4. Dawson.T.H., Offshore Structural Engineering, Prentice Hall Inc Englewood Cliffs, N.J.1983.
- 5. James F. Wilson, Dynamics of Offshore Structures, John Wiley & Sons, Inc, 2003.
- 6. Reddy, D.V. and Arockiasamy, M., Offshore Structures, Vol.1 and Vol.2, Krieger Publishing Company,1991.
- 7. Reddy.D.V and SwamidasA.S.J., Essential of offshore structures. CRCPress. 2013
- 8. TurgutSarpkaya, Wave Forces on Offshore Structures, Cambridge University Press, 2010.

Мар	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
		POs											PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3									2		2
CO2	3	2	3									2		2
CO3	3	2	3									2		2
CO4	3	2	3									2		2
CO5	3	2	3									2		2
	3 - High 2 - Medium 1 - Low													

Formative assessment:									
Bloom's Level	Assessment Component	Marks	Total marks						
Remember	Classroom or Online Quiz	5							
Understand	Understand Class Presentation/Power point presentation								
	Attendance	5							

Summative Assessment:									
	Continu	ous Assessme	Final						
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyse	0	0	0	0					
Evaluate	0	0	0	0					
Create	0	0	0	0					

20PSEE04		Matrix Method for Structural Analysis	L	Т	Р	С
201 01104		Matrix Metriod for Ottuctural Analysis	3	0	0	3
Nature of C	Course	Professional Core				
		Concepts of structural analysis				

The course is intended

- 1. To impart knowledge on the energy concept of the structure
- 2. To familiarize about the stiffness and flexibility of structures
- 3. To gain knowledge about the system forces to element forces
- 4. To impart knowledge about the the flexibility methods
- 5. The gain knowledge about the stiffness methods in structure

Course Outcomes:

At the end of the course, the students will be able to:

CO. No.	Course Outcome	Bloom's Level	
CO1	Understand Energy concepts in structures.	Understand	
CO2	Analysis the Characteristics of Structures – Stiffness and Flexibility	Analyse	
CO3	Calculate the Transformation of System Forces to Element Forces.	Evaluate	
CO4	Compute the flexibility method and understand application to Pin- Jointed Plane Truss	Evaluate	
CO5	Propose the Stiffness method in structural design.	Apply	

Course Contents:

Unit- I Energy Concepts In Structures

Introduction – Strain Energy – Symmetry of The Stiffness And Flexibility Matrices – Strain Energy in Terms of Stiffness And Flexibility Matrices – Stiffness And Flexibility Coefficients in Terms of Strain Energy – Additional properties of [a] and [k] – another Interpretation of coefficients aij and kij – Bette's law – Applications of Betti's law: Forces not at the coordinates – Strain energy in systems and in Elements.

Unit- II Characteristics of Structures – Stiffness and Flexibility

Introduction – Structure with Single Coordinate- Two Coordinates-Flexibility and Stiffness Matrices in Coordinates- Examples-Symmetric Nature of Matrices- Stiffness and Flexibility Matrices in Constrained Measurements- Stiffness and Flexibility of Systems and Elements-Computing Displacements and Forces form Virtual Work-Computing Stiffness and Flexibility Coefficients.

Unit - III Transformation of Information In Structures

Determinate- Indeterminate Structures-Transformation of System Forces to Element Forces-Element Flexibility to System Flexibility - System Displacement to Element Displacement-Element Stiffness to System Stiffness- Transformation of Forces and Displacements in General –Stiffness and Flexibility in General –Normal Coordinates and Orthogonal Transformation-Principle of Contregradience

Unit- IV The Flexibility Method

Statically Determinate Structures –Indeterminate Structures-Choice of Redundant Leading to III and Well Conditioned Matrices-Transformation to One Set of Redundant to Another-Internal Forces due to Thermal Expansion and Lack of Fit-ReducingtheSizeofFlexibilityMatrix-

CHAIRMAN - BOARD OF STUDIES

9

9

9

ApplicationtoPin-JointedPlaneTruss-ContinuousBeams-Frames-Grids.

Unit- V The Stiffness Method

Introduction-Development of Stiffness Method- Stiffness Matrix for Structures with zero Force at some Coordinates- Analogy between Flexibility and Stiffness-Lack of Fit-Stiffness Matrix with Rigid Motions-Application of Stiffness Approach to Pin Jointed Plane Trusses-Continuous Beams- Frames-Grids-Space Trusses and Frames-Introduction Only-Static Condensation Technique- Choice of Method-Stiffness or Flexibility.

Total: 45 Periods

- 1. Moshe F. Rubinstein Matrix Computer Analysis of Structures- PrenticeHall, 1969
- 2. Reddy C.S., "Basic Structural Analysis", Tata McGraw-Hill Publishing Company Limited, New Delhi,1997
- 3. Natarajan C and Revathi P., "Matrix Methods of Structural Analysis", PHI Learning Private Limited, New Delhi,2014
- 4. Devdas Menon., "Advanced Structural Analysis", Narosa Publishing House, New Delhi, 2009
- 5. Pandit G.S. and Gupta S.P., "Structural Analysis-A Matrix Approach", Tata McGraw-Hill PublishingCompany Limited, New Delhi,1997.

Марі	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
22	POs									PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3									2		2
CO2	3	2	3									2		2
CO3	3	2	3									2		2
CO4	3	2	3									2		2
CO5	3	2	3									2		2
	3 - H	igh			•	2 - N	ledium	•	•	•	1 - Lc	w		

Formative assessment:								
Bloom's Level	m's Level Assessment Component Marks							
Remember	Classroom or Online Quiz	5						
Understand	Class Presentation/Power point presentation	5	15					
	Attendance	5	. •					

		ative Assessm		
	Continu	ous Assessme	Final	
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

20PSEE11	Theory of Plates	L	Т	Р	С
ZOI OLLII	Theory of Flates	3	0	0	3
Nature of Cour	e Professional Core				
Pre requisites	Behavior of thin plates				

The course is intended

- 1. To impart knowledge on plates theory
- 2. To gain knowledge on analysis of simply supported rectangular plates
- 3. To familiarize on analysis of circular plates
- 4. To know about special and approximate methods of analysis of plates
- 5. To analyse anisotropic plates

Course Outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Illustrate the classification of plates	Understand
CO2	Gain Knowledge about the analysis of simply supported rectangular plates	Analyse
CO3	Analyse circular plates	Analyse
CO4	Gain knowledge about the energy methods	Understand
CO5	Analyse anisotropic plates	Analyse

Course Contents:

Unit - I Introduction To Plates Theory

9

Thin plates with small deflection. Laterally loaded thin plates, governing differential equation, various boundary Conditions

Unit - II Rectangular Plates

9

Rectangular plates Simply supported rectangular plates, Navier solution and Levy's method, Rectangular plates with various edge conditions, plates on elastic foundation. Moody's chart (for analysis of plates with various boundary conditions/loading)

Unit - III Circular Plates

9

Symmetrical bending of circular plates.

Unit - IV Special and Approximate Methods

9

Energy methods Finite difference and Finite element methods.

Unit - V Anisotropic Plates and Thick Plates

9

Orthotropic plates and grids, moderately thick plates.

Reference Books:

1. Bulson.P.S., "Stability Of Flat Plates., American Elsevier Publisher.Co., 1969.

- 2. Reddy J N, "Theory and Analysis of Elastic Plates and Shells", McGraw Hill Book Company, 2006.
- 3. Szilard, R., "Theory and Analysis of Plates classical and numerical methods, Prentice Hall Inc., 2004.
- 4. Timoshenko.S.P,andKriegerS.W."TheoryofPlatesandShells", McGrawHillBookCompany,New York,2003.
- 5. Ansel C.Ugural, "Stresses in plate and shells", McGraw Hill International Edition, 1999.
- 6. Bairagi, "Plate Analysis", Khanna Publishers, 1996.
- 7. Chandrashekahara, K. Theory of Plates, University Press (India) Ltd., Hyderabad, 2001.

Марі	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
		POs								PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	2									1	3	
CO2	3	1	2									1	3	
CO3	3	1	2									1	3	
CO4	3	1	2									1	3	
CO5	3	1	2									1	3	
	3 - H	3 - High 2 - Mediu				ledium	•	•	•	1 - Lc	w	•	•	

Formative assessment:								
Bloom's Level	Bloom's Level Assessment Component							
Remember	Classroom or Online Quiz	5						
Understand	Class Presentation/Power point presentation	5	15					
	Attendance	5						

	Sumn	native Assessm	ent:	
	Continu	ious Assessme	nt Tests	Final
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

20PSEE12 Mechanics of Composite Materials		Mechanics of Composite Materials	L	T	Р	С
		mechanics of composite materials		0	0	3
Nature of Co	ourse	Professional Core				
Pre requisite	es	Characteristics of composite materials				

The course is intended

- 1. To learn about composites and its classification
- 2. To understand stress strain relations
- 3. To impart knowledge on analysis of laminated composites
- 4. To familiarize on failure and fracture of composites
- 5. To acquire knowledge on applications and design of composites

Course Outcomes:

On successful completion of the course, the students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Understand the composites and its classification	Understand
CO2	Gain knowledge on stress strain relations	Understand
CO3	Analyse the laminated composites	Analyse
CO4	Understand the failure and fracture of composites	Understand
CO5	Understand the applications and design of composites	Understand

Course Contents:

Unit -I Introduction

9

Introduction to Composites, Classifying composite materials, commonly used fiber and matrix constituents, Composite Construction, Properties of Unidirectional Long Fiber Composites and Short Fiber Composites.

Unit - II Stress Strain Relations

9

Concepts in solid mechanics, Hooke's law for orthotropic and anisotropic materials, Linear Elasticity for Anisotropic Materials, Rotations of Stresses, Strains, Residual Stresses

Unit – III Analysis of Laminated Composites

9

Governing equations for anisotropic and orthotropic plates. Angle-ply and cross ply laminates – Static, Dynamic and Stability analysis for Simpler cases of composite plates, Inter laminar stresses.

Unit - IV Failure and Fracture of Composites

9

Netting Analysis, Failure Criterion, Maximum Stress, Maximum Strain, Fracture Mechanics of Composites, Sandwich Construction.

Unit- V Applications And Design

9

Metal and Ceramic Matrix Composites, Applications of Composites, Composite Joints, Design with Composites, Review, Environmental Issues

Total: 45 Periods

CHAIRMAN - BOARD OF STUDIES

- 1. Hyer M.W., and White S.R., "Stress Analysis of Fiber-Reinforced Composite Materials", D.Estech Publications Inc.,2009
- 2. Jones R.M., "Mechanics of Composite Materials", Taylor and Francis Group1999.
- 3. Mukhopadhyay.M, "Mechanics of Composite Materials and Structures", Universities Press, India, 2005.
- 4. Agarwal.B.D.,Broutman.L.J., and Chandrashekara.K. "Analysis and Performance of Fiber Composites", John-Wiley and Sons,2006.
- 5. Daniel.I.M., and Ishai.O, "Engineering Mechanics of Composite Materials", Oxford University Press, 2005

apping of	apping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
		POs								PS	Os			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2							2			1	3	
CO2	3	2							2			1	3	
CO3	3	2							2			1	3	
CO4	3	2							2			1	3	
CO5	3	2							2			2	3	
		;	3 - Hig	h			2 -	Mediu	ım			1 - L	OW	

Formative assessment								
Bloom's Level	Marks	Total marks						
Understand	Classroom or Online Quiz	5						
Analyze	Class Presentation/Power point presentation	5	15					
Evaluate	Attendance	5	15					

	Summative Assessment									
	Continuous	Assessment T	ests	Final						
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)						
Remember	0	0	0	0						
Understand	10	10	10	30						
Apply	0	0	0	0						
Analyse	10	10	10	30						
Evaluate	0	0	0	0						
Create	0	0	0	0						

20PSEE13 Analysis and Design of Tall Buildings		Analysis and Design of Tall Buildings	L	•	Р	С
		Analysis and besign of fair buildings	3	0	0	3
Nature of Co	ourse	Professional Core				
Pre requisite	es	Analysis and design of structural elements.		•		

The course is intended

- 1. To learn about loading and design principles of tall building
- 2. To know about the behavior of various structural systems
- 3. To familiarize on analysis and design of tall buildings
- 4. To familiarize on design for differential movement, creep and shrinkage
- 5. To gain knowledge on stability of tall buildings

Course Outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Understand loading and design principles of tall buildings	Understand
CO2	Gain knowledge on behavior of various structural systems	Understand
CO3	Analyze and design tall buildings	Create
CO4	Design for differential movement, creep and shrinkage	Create
CO5	Analyze stability issues in tall buildings	Analyse

Course contents:

Unit- I Loading and Design Principles

9

Loading- sequential loading, Gravity loading, Wind loading, Earthquake loading, - Equivalent lateral force, modal analysis - combination of loading, - Static and Dynamic approach - Analytical and wind tunnel experimental methods -Design philosophy-working stress method, limit state method and plastic design.

Unit- II Behaviour of Various Structural Systems

9

Factors affecting growth, height and structural form. High rise behaviour, Rigid frames, braced frames, In filled frames, shear walls, coupled shear walls, wall-frames, tubular, cores, outrigger - braced and hybrid mega systems.

Unit III Analysis and Design

9

Modeling for approximate analysis, accurate analysis and reduction techniques, Analysis of buildings as total structural System considering overall integrity and major subsystem interaction, Analysis for member forces, drift and twist –Computerized three dimensional analysis – Assumptions in 3D analysis – Simplified 2D analysis.

Unit-IV Structural Elements

9

Sectional shapes, properties and resisting capacity, design, deflection, cracking, prestressing, shear flow, Design for differential movement, creep and shrinkage effects, temperature effects and fire resistance.

Unit - V Stability

9

Overall buckling analysis of frames, wall-frames, Approximate methods, second order effects of gravity of loading-Delta analysis, simultaneous first-order and P-Delta analysis, Translational, Torsional instability, out of plumb effects, stiffness of member in stability, effect of foundation rotation.

- 1. Gupta.Y.P.,(Editor), Proceedings of National Seminar on High Rise Structures Design and Construction Practices for Middle Level Cities, New Age International Limited, NewDelhi,1995.
- 2. Lin T.Y and Stotes Burry D, "Structural Concepts and systems for Architects and Engineers", John Wiley,1988.
- 3. Taranath B.S., "Structural Analysis and Design of Tall Buildings", McGraw Hill, 1988
- 4. Beedle.L.S., "Advances in Tall Buildings", CBS Publishers and Distributors, Delhi,1986.
- 5. Bryan Stafford Smith and Alexcoull, "Tall Building Structures Analysis and Design", John Wiley and Sons, Inc., 2005.

Марі	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)														
COs		POs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3		1	3		1						2	3		
CO2	3		1	3		1						2	3		
CO3	3		1	3		1						2	3		
CO4	3		1	3		1						2	3		
CO5	3		1	3		1						2	3		
	3 - H	igh		•		2 - M	2 - Medium					1 - Low			

	Formative assessment											
Bloom's Level	Assessment Component	Marks	Total marks									
Remember	Classroom or Online Quiz	5										
Understand	Class Presentation/Power point presentation	5	15									
	Attendance	5										

Summative Assessment										
	Continu	uous Assessme								
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Final Examination (60)						
Remember	10	10	10	20						
Understand	10	10	10	20						
Apply	30	30	30	60						
Analyse	0	0	0	0						
Evaluate	0	0	0	0						
Create	0	0	0	0						

20PSEE14		Industrial Structures	Т	Р	С		
201 SEL14		industrial Structures					
Nature of Co	Irse Profes	sional Core					
Pre requisite	Planni	ng and Analysis of Industrial structures	•	•			

The course is intended

- 1. To learn the requirements, planning and design of Industrial structures.
- 2. To gain the knowledge on the design of gantry girder, corbels and nibs
- 3. To understand about the power plant structures
- 4. To impart knowledge on analysis and design of transmission line structures and chimneys
- 5. To familiarize on design of foundation for industrial structures

Course Outcomes:

On successful completion of the course, the students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Illustrate the classification of industrial structures and its guidelines	Understand
CO2	Analyse and design gantry girder and design of corbels and nibes	Create
CO3	Understand about power plant structures like cooling towers, bunkers and silos	Understand
CO4	Analyse and design transmission line structures and chimneys	Create
CO5	Design for foundation of industrial structures	Create

Course Contents:

Unit - I Planning And Functional Requirements

Classification of Industries and Industrial structures - planning for Layout Requirements regarding Lighting, Ventilation and Fire Safety - Protection against noise and vibration - Guidelines of Factories Act.

Unit – II Industrial Buildings

q

9

Steel and RCC - Gantry Girder, Crane Girders - Design of Corbels and Nibs - Design of Staircase.

Unit- III Power Plant Structures

9

Types of power plants – Containment structures - Cooling Towers - Bunkers and Silos - Pipe supporting Structures

Unit- IV Transmission Line Structures And Chimneys

9

Analysis and design of steel monopoles, transmission line towers – Sag and Tension calculations, Methods of tower testing – Design of s elf supporting and guyed chimney, Design of Chimney bases.

Unit- V Foundation

g

Design of foundation for Towers, Chimneys and Cooling Towers - Machine Foundation - Design of Turbo Generator Foundation.

Total: 45 Periods

- 1. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGrawHill, 1992.
- 2. Srinivasulu P and Vaidyanathan.C, Handbook of Machine Foundations, Tata McGraw Hill,1976.
- 3. JurgenAxelAdam,KatharriaHausmann,FrankJuttner,KlaussDaniel,IndustrialBuilding s:A Design Manual, Birkhauser Publishers,2004.
- 4. Manohar S.N, Tall Chimneys Design and Construction, Tata McGraw Hill, 1985

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
COs	COs												PS	Os
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3		2	3								1	3	
CO2	3		2	3								1	3	
CO3	3		2	3								1	3	
CO4	3		2	3								1	3	
CO5	3		2	3								1	3	
		•	3 - Hig	gh	•		2	- Med	ium	•		1 - Low		

Formative assessment										
Bloom's Level	Assessment Component	Marks	Total marks							
Understand	Classroom or Online Quiz	5								
Analyse	Class Presentation/Power point presentation	5	15							
	Attendance	5								

Summative Assessment											
	Continu	Final									
Bloom's Category	IAE I (7.5)	IAE II (7.5)	IAE III (10)	Examination (60)							
Remember	10	10	10	20							
Understand	10	10	10	20							
Apply	30	30	30	60							
Analyse	0	0	0	0							
Evaluate	0	0	0	0							
Create	0	0	0	0							

20PSEE15	Prestressed Concrete	L	T	Р	С
201 02213	restressed contrete	3	0	0	3
Nature of Cou	se Professional Core				
Pre requisites	Basic concepts on prestressing				

The course is intended

- 1. To understand the principles of prestressing
- 2. To become familiarize with the design of flexural members
- 3. To gain knowledge on design of continuous and cantilever beams
- 4. To impart knowledge on design of tension and compression beams
- 5. To perform analysis and design of composite members

Course Outcomes:

On successful completion of the course

CO. No.	Course Outcome	Bloom's Level
CO1	Understand the principles of prestressing	Understand
CO2	Analysis and design of flexural members	Create
CO3	Analysis and design of continuous and cantilever beams	Create
CO4	Analysis and design of tension and compression members	Create
CO5	Analysis and design of composite members	Create

Course Contents:

Unit- I Principles of Prestressing

9

Basic concepts of Prestressing – Types and systems of prestressing – Need for High Strength materials, Analysis methods, losses of prestress – Short and Long term deflections – Cable layouts.

Unit- II Design of Flexural Members

9

Behaviour of flexural members, determination of ultimate flexural strength – Various Codal provisions – Design of flexural members, Design for shear, bond and torsion. Transfer of prestress – Box girders.

Unit III Design of Continuous and cantilever beams

9

Analysis and design of continuous beams – Methods of achieving continuity – concept of linear transformations, concordant cable profile and gap cables – Analysis and design of cantilever beams.

Unit IV Design of Tension and Compression Members

9

Design of tension members – application in the design of prestressed pipes and prestressed concrete cylindrical water tanks – Design of compression members with and without flexure – its application in the design piles, flag masts and similar structures.

Unit -V Design of Composite Members

õ

Composite beams – analysis and design, ultimate strength – their applications. Partial prestressing its advantages and applications.

- 1. Lin.T.Y.,andBurns.H "Design of Prestressed Concrete Structures", John Wiley and Sons Inc, New York, 2009
- 2. Rajagopalan.N, "Prestressed Concrete", Narosa Publications, New Delhi, 2008.
- 3. Sinha.N.C.and.Roy.S.K, "Fundamentals of Prestressed Concrete", S.Chand and Co.,1998.Arthur
- 4. H. Nilson, "Design of Prestressed Concrete", John Wiley and Sons Inc, New York, 2004.
- 5. Krishna Raju, "Prestressed Concrete", Tata McGraw Hill Publishing Co., New Delhi, 2008.

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
	POs												PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2								2	1	3	
CO2	3	2	3								2	1	3	
CO3	3	2	3								2	1	3	
CO4	3	2	3								2	1	3	
CO5	3	2	3								2	2	3	
	3 - H	igh				2 - Medium				1 - Low				

Formative assessment									
Bloom's Level Assessment Component Marks									
Understand	Classroom or Online Quiz	5							
Analyze	Class Presentation/Power point presentation	5	15						
Evaluate	Attendance	5							

20PSEE16	Wind and Cyclone Effects on Structures	L	Т	Р	С
20F3LL10	Willia and Gyclone Effects on Structures	3	0	0	3
Nature of Co	ourse Professional Core				
Pre requisite	Concept of wind and cyclone effects for the analysis and	design of s	truc	ture	s.

The course is intended

- 1. To Be able to find wind characteristics
- 2. To Develop knowledge on wind tunnel analysis and aerodynamics
- 3. To impart knowledge on effects of wind on structures
- 4. To design chimneys and transmission towers for wind loads
- 5. To familiarize on the effects of cyclone

Course Outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Learn about the types of wind ,pressure and suctions	Understand
CO2	Gain the knowledge on types of tunnels and design of wind tunnels	Remember
CO3	Analyse the wind effects on structures like building s and chimneys	Analyse
CO4	Design tall buildings for wind load as per codal provisions	Analyse
CO5	Evaluate cyclone effects on low rise structures and sloped roof structures	Evaluate

Course Contents:

Unit - I Introduction

9

Introduction, Types of wind – Characteristics of wind – Wind velocity, Method of measurement, variation of speed with height, shape factor, aspect ratio, drag effects - Dynamic nature of wind – Pressure and suctions - Spectral studies, Gust factor.

Unit - II Wind Tunnel Studies

9

Wind Tunnel Studies, Types of tunnels, - Prediction of acceleration – Load combination factors – Wind tunnel data analysis – Calculation of Period and damping value for wind design - Modeling requirements, Aero dynamic and Aero-elastic models.

9

Classification of structures – Rigid and Flexible – Effect of wind on structures - Static and dynamic effects on Tall buildings – Chimneys.

Unit - IV Design of Special Structures

9

Design of Structures for wind loading – as per IS, ASCE and NBC code provisions – design of Tall Buildings – Chimneys – Transmission towers and steel monopoles–Industrial sheds.

Unit - V Cyclone Effects

9

Cyclone effect on – low rise structures – sloped roof structures - Tall buildings. Effect of cyclone on claddings – design of cladding – use of code provisions in cladding design – Analytical procedure and modeling of cladding.

- 1.Lawson T.V., "Wind Effects on Building Vol. I and II", Applied Science Publishers, London,1980.
- 2. Peter Sachs, "Wind Forces in Engineering", Pergamon Press, New York, 1978.
- 3. Cook.N.J., "The Designer's Guide to Wind Loading of Building Structures", Butterworths, 1989.
- 4. Kolousek.V,Pirner.M,Fischer.OandNaprstek.J,"WindEffectsonCivilEngineeringStructures", Elsevier Publications,1984

Марі	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
COs	COs									PS	Os			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3		1	2					2				3	
CO2	3		1	2					2				3	
CO3	3		1	2					2				3	
CO4	3		1	2					2				3	
CO5	3		1	2					2				3	
	3 - High					2 - M	lediun)			1 - Lo	w		

	Formative assessment								
Bloom's Level	Assessment Component	Marks	Total marks						
Understand	Classroom or Online Quiz	5							
Analyze	Class Presentation/Power point presentation	5							
Evaluate	Attendance	5	15						

Summative Assessment									
	Continu	Final							
Bloom's Category	IAE 1 (7.5)	IAE 2 (7.5)	IAE 3 (10)	Examination (60)					
Remember	0	0	0	0					
Understand	10	10	10	20					
Apply	0	0	0	0					
Analyse	30	30	30	60					
Evaluate	10	10	10	20					
Create	0	0	0	0					

	Res	search Methodology And Intellectual Property Rights	L	T	Р	С
20PEE301		(Common to all Branches of PG)	3	0	0	3
Nature of Co	ourse	Professional core	l .			
Pre requisit	es	Nil				

The course is intended to

- 1. Impart knowledge and skills required for research problem formulation
- 2. Identify the relevant literatures for research
- 3. Expose the skills on technical paper writing / presentation without violating professional ethics
- 4. Acquire knowledge on IPR and patents.
- 5. Gain knowledge on patent rights and Patent information database

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Identify and formulate research problem	Apply
CO2	Describe the literatures related to research problem.	Understand
	Implement the effective methods to write a standard technical paper and make presentation.	Apply
CO4	Execute the correct procedure for applying patents	Apply
CO5	Familiarize on patent rights, licensing and transfer of technology.	Understand

Course Contents:

Unit- I Research Problem Formulation

Ç

Meaning of research problem- Sources of research problem, criteria characteristics of a good research problem, errors in selecting a research problem, scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, necessary instrumentations.

Unit- II Literature Review

9

Effective literature studies approaches, analysis, plagiarism, and research ethics.

Unit - III Technical Writing / Presentation

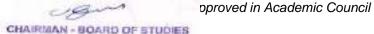
9

Effective technical writing, how to write report, paper, developing a research proposal, format of research proposal, Latex Programming, a presentation and assessment by a review committee.

Unit- IV Introduction to Intellectual Property Rights (IPR)

C

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, Research Hypothesis, Innovation, patenting development, Citation, International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.


Unit- V Intellectual Property Rights (IPR)

9

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System, IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs

Total: 45 Periods

Passed by Board of studies

- 1. Kothari, C.R." Research Methodology Methods and Techniques". 2nd Edition, New Age International Publishers, New Delhi 2004.
- 2. Garg.B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., "An introduction to Research Methodology", RBSA Publishers 2002
- 3. Sinha, S.C. and Dhiman, A.K.". Research Methodology", Ess Ess Publications. 2 volumes.2002
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners" 2010.

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)																
	POs											F	PSOs				
COs		1	2	3	4	5	6	7	7	8	9	10	11	12	1	2	
CO1	;	3	3			3	3			2				3		2	
CO2	;	3	3			3	3			2				3		2	
CO3	;	3	3			3	3			2				3		2	
CO4	;	3	3			3	3			2				3		2	
CO5	;	3	3			3	3			2				3		2	
	3		1	High			2	2 Medium 1				1	Lo	W			

Formative assessment								
Bloom's Level	Assessment Component	Marks	Total marks					
Remember	Online Quiz	5						
Understand	Class Presentation/Power point presentation	5	15					
	Attendance	5						

Summative Assessment								
	Internal A	ssessment Ex	Final Examination					
Bloom's Category	IAE- I (7.5)	IAE- II (7.5)	IAE-III (10)	(60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyse								
Evaluate								
Create								

00000004	D - 1 - (1) / D 1)	L		Р	ز
20PSE301	Project Work (Phase I)	0	0	12	6
Nature of Co	urse Employability Enhancement Course				
Pre requisite	s Knowledge in structural Engineering				

The course is intended to

- 1. Identify a specific problem for the current need of the society and collecting information related to The same through detailed review of literature
- 2. Analyze the identified problem.
- 3. Compare the current methodologies.
- 4. Propose a new methodology.
- 5. Conduct the preliminary test.

Course Outcomes

On successful completion of the Project Phase I, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Execute the clear idea of his/her area of work and carry out the remaining phase II work in a systematic way.	Knowledge
CO2	Identify the existing methodologies.	Knowledge
CO3	Analyze the merits and demerits of current methodologies.	Apply
CO4	Identify an efficient methodology.	Analyze
CO5	Select a particular material based on specific properties.	Apply

Course Contents:

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

Total: 180 Periods

CHAIRMAN - BOARD OF STUDIES

Mappi	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)																
	POs									!	PSOs						
COs		1	2	3	4	5		6	7	8	9	10	11	12	1	2	
CO1		3	3	3	3	3		3						3		3	
CO2		3	3	3	3	3		3						3		3	
CO3		3	3	3	3	3		3						3		3	
CO4		3	3	3	3	3		3						3		3	
CO5		3	3	3	3	3		3						3		3	
	3			High	ı		2	Medium 1				1	Lo	W			

		Final Viva					
	Review I [10]	Review II [10]	Review III [10]	Publication [10]	Report [10 Marks]	Total [50]	Voce Examination [50 marks]
Marks	100	100	100	10	10	50	50

0000000	1.1.4117.11.11	L	T	Р	С
20PSE302	20PSE302 Industrial Training II		0	0	1
Nature of Co	urse Employability Enhancement Course				
Pre requisite	s Knowledge in structural engineering				

The course is intended to

- 1. Train the student in the construction field related to Structural Engineering
- 2. Develop skills in preparing the project report
- 3. Compare the theoretical and construction filed practical knowledge
- 4. Understand the practical difficulties and find suitable solutions
- 5. Get industrial exposure of various construction projects

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Solve the practical filed/ industry oriented problem related to Environmental Engineering.	Apply
CO2	Prepare an industrial project report.	Understand
CO3	Implement the technical concepts for industrial applications.	Apply
CO4	Interpret the practical difficulties and find the suitable solutions.	Apply
CO5	Describe the various types of individual projects.	Understand

Course Contents:

The students individually undertake training in reputed Industries during the summer vacation for a specified period of two weeks. At the end of training, a detailed report on the work done should be submitted within ten days from the commencement of the semester. The students will be evaluated through a viva-voce examination by a team of internal staff.

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)														
	POs										ı	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1						2	3	2	3	1				2	
CO2						2	3	2	3	1				2	
CO3						2	3	2	3	1				2	
CO4						2	3	2	3	1				2	
CO5						2	3	2	3	1				2	
	3		High			2		Med	ium	1	ı	1	Lo	w	

Assessment	Guide	Supervisor	Total Marks
Review I	20	20	
Review II	20	20	100
Report/Case study	-	20	

Passed by Board of studies

Approved in Academic Council

00005404	Darland Maria (Diagram)	L	T	Р	С
20PSE401	Project Work (Phase II)	0	0	24	12
Nature of Cou	rse Employability Enhancement Course				
Pre requisites	Knowledge in structural engineering				

The course is intended to

- 1. Conduct trial experiments.
- 2. Check the expected results
- 3. Continue the trials until the expected positive results are obtained
- 4. Preparation of preliminary report and discussion on test results
- 5. Arrive at conclusion and suggestion for future works

Course Outcomes

On successful completion of the Project Phase II, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Execute the trial experimental works	Apply
CO2	Correlate the experimental results and expected results	Knowledge
CO3	Prolong the experimental works for getting expected results	Apply
CO4	Prepare the experimental investigation report and comparison with related literature concepts	Knowledge
CO5	Conclude the results with suitable remarks and suggestion for further extension of work.	Knowledge

Course Contents:

The student should continue the phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated through based on the report and the viva-voce examination by a panel of examiners including one external examiner

Total: 45 Periods

Mappi	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)														
	POs										F	PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	3	3	3						3		3	
CO2	3	3	3	3	3	3						3		3	
CO3	3	3	3	3	3	3						3		3	
CO4	3	3	3	3	3	3						3		3	
CO5	3	3	3	3	3	3						3		3	
	3	•	High	•	•	2	Medium 1				Lo	W			

		Final Viva					
	Review I [10]	Review II [10]	Review III [10]	Publication [10]	Report [10 Marks]	Total [50]	Voce Examination [50 marks]
Marks	100	100	100	10	10	50	50

James

CHAIRMAN - BOARD OF STUDIES

20PSEE21		Nonlinear Analysis of Structures	L	T	Р	С			
ZUFSLLZT		Nonlineal Analysis of Structures	3	0	0	3			
Nature of C	ourse	urse Professional Elective							
Pre requisi	tes	Theory of Elasticity and Plasticity							

The course is intended to

- 1. Study the concept of nonlinear behavior and analysis of elements and simple structures.
- 2. Impart knowledge on the inelastic analysis of the flexural members.
- 3. Understand the concept of vibration theory and analysis of flexural members
- 4. Gain knowledge on Elastic and Inelastic Analysis of Plates
- 5. Understand the Nonlinear Vibration and Instability of beams

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Acquire knowledge on non linear analysis	Understand
CO2	Become knowledgeable on inelastic analysis of flexural members	Analyze
CO3	Familiarize on vibration theory and analysis of flexural members	Apply
CO4	Analyze elastic and inelastic plates	Analyze
CO5	Become well versed on nonlinear vibration and instability	Understand

Course Contents:

Unit- I Introduction to Nonlinear Analysis

Material nonlinearity, geometric nonlinearity; statically determinate and statically indeterminate bar systems of uniform and variable thickness.

Unit- II Inelastic Analysis of Flexural Members

9

Inelastic analysis of uniform and variable thickness members subjected to small deformations; inelastic analysis of bars of uniform and variable stiffness members with and without axial restraints

Unit - III Vibration Theory and Analysis of Flexural Members

Vibration theory and analysis of flexural members; hysteretic models and analysis of uniform and variable stiffness members under cyclic loading

Unit- IV Elastic and Inelastic Analysis of Plates

9

Elastic and inelastic analysis of uniform and variable thickness plates

Unit- V Nonlinear Vibration and Instability

9

Nonlinear vibration and Instabilities of elastically supported beams.

Total: 45 Periods

Referece Books:

- 1. Fertis, D.G, Non-linear Mechanics, CRC Press, 1999
- 2. Sathyamoorthy.M, Nonlinear Analysis of Structures, CRC Press, 2010.
- 3. Reddy.J.N, Non-linear Finite Element Analysis, Oxford University Press, 2008.

Passed by Board of studies

Approved in Academic Council

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)														
			ı	PSOs											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3		2									2		
CO2	3	3		2									2		
CO3	3	3		2									2		
CO4	3	3		2									2		
CO5	3	3		2								2	2		
	3	3 High				2	1	Medi	ium			1	Lo	W	

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	

	Sum	nmative Asses	sment	
	Internal A	ssessment Ex	Final Examination	
Bloom's Category	IAE-I (7.5)	IAE-II (7.5)	IAE-III (10)	(60)
Remember				
Understand	10	10	10	20
Apply	10	10	10	20
Analyse	30	30	30	60
Evaluate				
Create				

CHAIRMAN - BOARD OF STUDIES

20PSEE22		Design of Sub Structures	L	T	Р	С
			3	0	0	3
Nature of Co	urse	Professional Elective				
Pre requisite	es	Knowledge in Geotechnical Engineering				

The course is intended to

- 1. Gain familiarity with different types of foundation Know the mechanism of load transfer in beams, the induced stress resultants and deformations.
- 2. Expose the students to the design of shallow foundations and deep foundations
- 3. Understand the concepts of designing well, machine and special foundations.
- 4. Impart knowledge on principles of machine foundation
- 5. Familiarize on special foundation

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Select appropriate foundation type based on available soil conditions.	Understand
001		Officerstatio
CO2	Acquire knowledge on pile foundation and its design aspects	Understand
CO3	Become knowledgeable on design of well foundation	Apply
CO4	Identify suitability of machine foundation	Apply
CO5	Specialize on foundations for towers and chimneys	Apply

Course Contents:

Unit- I Shallow Foundations

9

Soil investigation – Basic requirements of foundation – Types and selection of foundations. Bearing capacity of soil - plate load test – Design of reinforced concrete isolated, strip, combined and strap footings – mat foundation.

Unit- II Pile Foundations

9

Introduction – Types of pile foundations – load carrying capacity - pile load test – structural design of straight piles –configuration of piles- different shapes of piles cap – structural design of pile cap.

Unit - III Well Foundations

9

Types of well foundation – Grip length – load carrying capacity – construction of wells – Failures and Remedies – Design of well foundation – Lateral stability.

Unit- IV Machine Foundations

9

Introduction – Types of machine foundation – Basic principles of design of machine foundation – Dynamic properties of soil – vibration analysis of machine foundation – Design of foundation for Reciprocating machines and Impact machines – Reinforcement and construction details – vibration isolation.

Unit- V Special Foundations

C

Foundation on expansive soils – choice of foundation – under-reamed pile foundation. Foundation for concrete Towers, chimneys – Design of anchors- Reinforced earth retailing walls.

Total: 45 Periods

Passed by Board of studies

Approved in Academic Council

- 1. Bowles .J.E., "Foundation Analysis and Design", McGraw Hill Publishing co., 5th edition, New York, 2001.
- 2. Tomlinson.M.J, "Foundation Design and Construction", Longman, 6th ediiton, New Delhi, 1995.
- 3. Varghese.P.C, "Design of Reinforced Concrete Foundations" PHI learning private limited, New Delhi 2009.
- 4. Swamy Saran, Analysis and Design of substructures, Oxford and IBH Publishing Co. Pvt. Ltd., 2006

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)														
				PSOs											
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	2					2	2	1		2		
CO2	3	3	3	2					2	2	1		2		
CO3	3	3	3	2					2	2	1		2		
CO4	3	3	3	2		3			2	2	1		2		
CO5	3	3	3	2	3	3			2	2	1	3	2		
	3	3 High					1	Med	ium	1		1	Lo)W	

	Formative assessment		
Bloom's Level Assessment Component Remember Online Quiz	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	

	Sum	mative Asses	sment	
	Internal A	ssessment Ex	camination	Final Examination
Bloom's Category	IAE-I (7.5)	IAE-II (7.5)	IAE-III (10)	(60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse				
Evaluate				
Create				

CHAIRMAN - BOARD OF STUDIES

1

00000000	Outlies leading of Others towns	L	T	Р	С
20PSEE23	Optimization of Structures	3	0	0	3
Nature of Co	rse Professional core				
Pre requisite	Basic Mathematics				

The course is intended to

- 1. Impart knowledge on basic principles and classical optimization techniques
- 2. Gain knowledge on linear and non linear programming
- 3. Understand the concepts of geometric programming
- 4. Identify the principles of dynamic programming
- 5. Familiarize on structural applications of optimization

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Acquire Knowledge on basic principles and classical optimization techniques.	Understand
CO2	Select the methods of linear and non linear programming	Apply
CO3	Identify the concept of solving problems using one degree of difficulty	Apply
CO4	Utilize the concept of sub-optimization problems using classical and tabular methods.	Apply
CO5	Apply the Optimization principles to design of RCC multistorey buildings, water tanks and bridges	Apply

Course Contents:

Unit- I Basic Principles and Classical Optimization Techniques

Definition - Objective Function; Constraints - Equality and inequality - Linear and non-linear, Side, Non-negativity, Behaviour and other constraints - Design space - Feasible and infeasible Convex and Concave - Active constraint - Local and global optima. Differential calculus - Optimality criteria - Single variable optimization - Multivariable optimization with no constraints (Lagrange Multiplier method) - with inequality constraints (Khun - Tucker Criteria).

Unit- II Linear and Non-Linear Programming

LINEAR PROGRAMMING: Formulation of problems - Graphical solution - Analytical methods - Standard form - Slack, surplus and artificial variables - Canonical form - Basic feasible solution - simplex method - Two phase method - Penalty method - Duality theory - Primal - Dual algorithm.

NON LINEAR PROGRAMMING: One Dimensional minimization methods: Unidimensional - Unimodal function - Exhaustive and unrestricted search - Dichotomous search - Fibonacci Method - Golden section method - Interpolation methods. Unconstrained optimization Techniques.

Unit-III Geometric Programming

9

9

9

Polynomial - degree of difficulty - reducing G.P.P to a set of simultaneous equations - Unconstrained and constrained problems with zero difficulty - Concept of solving problems with one degree of difficulty.

Unit- IV Dynamic Programming

9

Bellman's principle of optimality - Representation of a multistage decision problem - concept of sub-optimization problems using classical and tabular methods.

Passed by Board of studies

Approved in Academic Council

Unit- V Structural Applications

Methods for optimal design of structural elements, continuous beams and single storied frames using plastic theory - Minimum weight design for truss members - Fully stressed design - Optimization principles to design of R.C. structures such as multistorey buildings, water tanks and bridges

Total: 45 Periods

9

Reference Books:

- 1. Iyengar.N.G.R and Gupta.S.K, "Structural Design Optimization", Affiliated East West Press Ltd, New Delhi, 1997
- 2. Rao, S.S. "Optimization theory and applications", Wiley Eastern (P) Ltd., 1984
- 3. Spunt, "Optimization in Structural Design", Civil Engineering and Engineering Mechanics Services, Prentice-Hall, New Jersey 1971.
- 4. Uri Krish, "Optimum Structural Design", McGraw Hill Book Co. 1981
- 5. Haftka, R. T. and Gurdal, Z., Elements of Structural Optimization, Springer, 3rd Edition, 1992

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)														
			PS	PSOs											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2									3	2		
CO2	3	3	2									3	2		
CO3	3	3	2									3	2		
CO4	3	3	2									3	2		
CO5	3	3	2		3							3	2		
	3	3 High					I	Med	ium	1		1	Low	! !	

	Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks					
Remember	Online Quiz	5						
Understand	Class Presentation/Power point presentation	5	15					
	Attendance	5						

Summative Assessment								
	Internal A	ssessment Ex	amination	Final Examination				
Bloom's Category	IAE-I (7.5)	IAE-II (7.5)	IAE-III (10)	(60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyse								
Evaluate								
Create								

CHAIRMAN - BOARD OF STUDIES

20PSEE24	Design of Steel Concrete Composite Structures	L 3	T 0	P 0	C
Nature of Co	urse Professional Elective	l .			
Pre requisite	Design knowledge in steel and concrete structures				

The course is intended to

- 1. Gain knowledge on steel, concrete composite construction
- 2. Impart knowledge on design of composite members
- 3. Acquire knowledge on design of connections
- 4. Develop knowledge on design of composite box girder bridges
- 5. Understand the seismic behavior of composite structures

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Get an exposure of steel, concrete composition of structures	Understand
CO2	Design composite beams, slabs, columns and trusses	Apply
CO3	Design the various types of connections in composite structures	Apply
CO4	Become knowledgeable on the behavior of box girder bridges	Apply
CO5	Familiarize on seismic behavior of composite structures	Apply

Course Contents:

Unit- I Introduction 9

Introduction to steel - concrete composite construction - Codes - Composite action - Serviceability and Construction issues in design.

Unit- II Design of Composite Members

Design of composite beams, slabs, columns, beam – columns - Design of composite trusses

Unit - III Design of Connections

Shear connectors – Types – Design of connections in composite structures – Design of shear connectors – Partial shear interaction

Unit- IV Composite Box Girder Bridges

Introduction - behaviour of box girder bridges - design concepts.

Unit- V Case Studies 9

Case studies on steel - concrete composite construction in buildings - seismic behaviour of composite structures.

Total: 45 Periods

9

9

9

- 1. Johnson R.P., "Composite Structures of Steel and Concrete Beams, Slabs, Columns and Frames for Buildings", Vol.I, Blackwell Scientific Publications, 2004.
- 2. Oehlers D.J. and Bradford M.A., "Composite Steel and Concrete Structural Members, Fundamental behaviour", Pergamon press, Oxford, 1995.
- 3. Qing Quan Liang, Analysis and Design of steel and composite structures, trailor & Francis Ltd. London, 1st Edition, 2014.
- 4. Owens.G.W and Knowles.P, "Steel Designers Manual", Steel Concrete Institute(UK), Oxford Blackwell Scientific Publications, 1992.
- 5. Narayanan R, "Composite steel structures Advances, design and construction", Elsevier, Applied science, UK, 1987

Маррі	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)													
				POs	6									PSOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3		3				2		1		2	
CO2	3	2	3		3				2		1		2	
CO3	3	2	3		3				2		1		2	
CO4	3	2	3		3				2		1		2	
CO5	3	2	3		3				2		1	3	2	
	3	3 High 2 Medium 1								Low				

	Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks					
Remember	Online Quiz	5						
Understand	Class Presentation/Power point presentation	5	15					
	Attendance	5						

Summative Assessment								
	Internal As	sessment Ex	amination	Final Examination				
Bloom's Category	IAE- I (7.5)	IAEII (7.5)	IAE-III (10)	(60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyse								
Evaluate								
Create								

20PSEE25	Design of Bridges	L	T 0	P 0	C
Nature of Cour	Professional Elective				
Pre requisites	Knowledge in Design of structures				

The course is intended to

- 1. Gain knowledge on analysis and design of RCC slab bridge
- 2. Impart knowledge on the principles of design of long span bridges
- 3. Understand the design concepts of prestressed concrete bridges
- 4. Develop knowledge on design of steel bridges
- 5. Familiarize on the design of bearing and substructures

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Analyze and design RCC solid slab bridges	Apply
CO2	Identify the design principles of Long Span RC Bridges	Apply
CO3	Design the Prestressed concrete bridges	Apply
CO4	Design steel bridges and its various types	Apply
CO5	Design the bearings and different types of bridge foundation	Apply

Course Contents:

Unit- I General Introduction and Short Span RC Bridges

9

Types of bridges and loading standards - Choice of type - I.R.C. specifications for road bridges - Design of RCC solid slab bridges - analysis and design of slab culverts, Tee beam and slab bridges

Unit- II Long Span RC Bridges

3

Design principles of continuous girder bridges, box girder bridges, and balanced cantilever bridges – Arch bridges – Box culverts – Segmental bridges

Unit - III Prestressed Concrete Bridges

9

Flexural and torsional parameters – Courbon's theory – Distribution co-efficient by exact analysis – Design of girder section – maximum and minimum prestressing forces – Eccentricity – Live load and dead load shear forces – Cable Zone in girder – check for stresses at various sections – check for diagonal tension – Diaphragms – End block – short term and long term deflections

Unit- IV Steel Bridges

9

General – Railway loadings – dynamic effect – Railway culvert with steel beams – Plate girder bridges – Box girder bridges – Truss bridges – Vertical and Horizontal stiffeners

Unit- V Bearings and Substructures

9

Different types of bearings – Design of bearings – Design of piers and abutments of different types – Types of bridge foundations – Design of foundations.

- 1. Jagadeesh.T.R. and Jayaram.M.A., "Design of Bridge Structures", Prentice Hall of India Pvt. Ltd. 2004.
- 2. Johnson Victor, D. "Essentials of Bridge Engineering", Oxford and IBH Publishing Co. New Delhi, 2001.
- 3. Ponnuswamy, S., "Bridge Engineering", Tata McGraw Hill, 2008.
- 4. Raina V.K." Concrete Bridge Practice" Tata McGraw Hill Publishing Company, New Delhi, 1991.

Маррі	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)																
	POs										F	PSOs					
COs	1	1	2	3	4	5		6	7	8	9	10	11	12	1	2	
CO1	3	3	2	2		2					2		1		2		
CO2	3	3	2	2		2					2		1		2		
CO3	3	3	2	2		2					2		1		2		
CO4	3	3	2	2		2					2		1		2		
CO5	3	3	2	2		2					2		1		2		
	3	3 High 2 Medium 1					Lo	w									

	Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks					
Remember	Online Quiz	5						
Understand	Class Presentation/Power point presentation	5	15					
	Attendance	5						

Summative Assessment								
	Internal As	ssessment Ex	camination	Final Examination				
Bloom's Category	IAE- I (7.5)	IAE- II (7.5)	IAE-III (10)	(60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyse								
Evaluate								
Create								

00000000		Decima of Chall and Chatial Charactures		T	Р	С
20PSEE26		Design of Shell and Spatial Structures	3	0	0	3
Nature of Co	urse	Professional Elective				
Pre requisite	S	Knowledge in design of concrete structures				

The course is intended to

- 1. Gain knowledge on classification of shells and membrane analysis
- 2. Impart knowledge on the structural behavior of folded plates
- 3. Give and exposure to the design philosophy of space frames
- 4. Become knowledgeable on analysis and design of space frames
- 5. Familiarize on the applications of special methods in shell design

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Analyze and design shell roofs	Apply
CO2	Identify the structural behavior of folded plates	Understand
CO3	Acquire knowledge on the design philosophy and behavior of space frames	Apply
CO4	Analyze and computer aided design of space frames	Analyze
CO5	Select a special method of application of Formex Algebra in shell design .	Apply

Course Contents:

Unit-I Classification of Shells

.

Classification of shells, types of shells, structural action, - Design of circular domes, conical roofs, circular cylindrical shells by ASCE Manual No.31. application to design of shell roofs of water tanks(membrane analyses)

Unit- II Folded Plates

Folded Plate structures, structural behaviour, types, design by ACI - ASCE Task Committee method – pyramidal roof.

Unit - III Introduction to Space Frame

9

Space frames - configuration - types of nodes - Design Philosophy - Behaviour.

Unit- IV Analysis and Design

9

Analysis of space frames – Design of Nodes – Pipes - Space frames – Introduction to Computer Aided Design

Unit- V Special Methods

9

Application of Formex Algebra, FORMIAN for generation of configuration.

- 1. Subramanian.N ,"Space Structures: Principles and Practice", Multi-Science Publishing Co. Ltd. 2008.
- 2. Varghese.P.C., Design of Reinforced Concrete Shells and Folded Plates, PHI Learning Pvt. Ltd., 2010.
- 3. Billington. D.P, "Thin Shell Concrete Structures", McGraw Hill Book Co., New York, 1982. ASCE Manual No.31, Design of Cylindrical Shells.
- 4. Ramasamy, G.S., "Analysis, Design and Construction of Steel Space Frames", Thomas Telford Publishing, 2002.

Маррі	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)															
	POs										I	PSOs				
COs		1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1		3	3	3		3				2			3	2		
CO2		3	3	3		3				2			3	2		
CO3		3	3	3		3				2			3	2		
CO4		3	3	3		3				2			3	2		
CO5		3	3	3		3				2			3	2		
	3 High Med			dium			1	Lo	w							

Formative assessment									
Bloom's Level	Assessment Component	Marks	Total marks						
Remember	Online Quiz	5							
Understand	Class Presentation/Power point presentation	5	15						
	Attendance	5							

Summative Assessment									
	Internal A	ssessment Ex	Final Examination						
Bloom's Category	IAE- I (7.5)	IAE-II (7.5)	IAE-III (10)	(60)					
Remember									
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyse	10	10	10	20					
Evaluate									
Create									

20PSEE27		Computer Aided Analysis and Design	L	T 0	P 0	٥
Nature of Co	urse	Professional Elective				
Pre requisite	S	Knowledge in structural analysis and design				

The course is intended to

- 1. Impart knowledge on computer graphics
- 2. Gain knowledge on computer method of structural analysis
- 3. Understand the computer aided design concepts.
- 4. Acquire knowledge on optimization of structural design
- 5. Familiarize on the concepts of artificial intelligence

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Select the concepts of modeling of curves, surfaces and wire frames	Understand
CO2	Carry out the computer method of structural analysis	Apply
CO3	Get exposure on computer aided design of steel and RC structural elements	Apply
CO4	Become knowledgeable on the applications of Linear programming	Understand
CO5	Identify the suitable knowledge based expert system	Understand

Course Contents:

Unit- I Computer Graphics

(

Graphic primitives – Transformations – Basics of 2D drafting – Modelling of curves and surfaces – Wire frame modelling – Solid Modelling - Graphic standards - Drafting Software packages.

Unit- II Structural Analysis

a

Computer method of structural analysis – Simulation and Analysis of steel sections I, channel and Angle –PEB Elements – RCC and Composite members - Nonlinear Analysis through software packages

Unit - III Structural Design

9

Computer Aided Design of Steel and RC structural elements – Detailing of reinforcement – Detailed Drawing

Unit- IV Optimization

ć

Introduction to Optimization – Applications of Linear programming – Simplex Algorithm – Post Optimality Analysis – Project scheduling – CPM and PERT Applications.

Unit- V Artificial Intelligence

9

Introduction – Heuristic Research – Knowledge based Expert Systems – Architecture and Applications – Rules and Decision tables – Inference Mechanisms – Simple Applications – Genetic Algorithm and Applications – Principles of Neural Network – Expert system shells.

- 1. Moshe F. Rubinstein, Matrix computer analysis of structures, 1st Edition Prentice Hall.Inc., 1966.
- 2. Harrison H.B., "Structural Analysis and Design Vol.I and II", Pergamon Press, 1991
- 3. Rao. S.S., "Optimisation Theory and Applications ", Wiley Eastern Limited, New Delhi, 2009.
- 4. Krishnamoorthy C.S and Rajeev S., "Computer Aided Design", Narosa Publishing House, New Delhi, 1991.
- 5. GrooverM.P.and Zimmers E.W. Jr.," CAD/CAM, Computer Aided Design and Manufacturing", Prentice Hall of India Ltd, New Delhi, 1993.

Марр	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)																
	POs										PSOs						
COs		1	2	3	4	5		6	7	8	9	10	11	12	1	2	
CO1		3	3	3		3								3	2		
CO2		3	3	3		3								3	2		
CO3		3	3	3		3								3	2		
CO4		3	3	3		3								3	2		
CO5		3	3	3		3								3	2		
	3		1	High	1	1	2	2 Medium 1			Lo	w					

Formative assessment									
Bloom's Level	Assessment Component	Marks	Total marks						
Remember	Online Quiz	5							
Understand	Class Presentation/Power point presentation	5	15						
	Attendance	5							

Summative Assessment									
	Internal A	ssessment Ex	Final Examination						
Bloom's Category	IAE- I (7.5)	IAE-II (7.5)	IAE-III (10)	(60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyse									
Evaluate									
Create									

00005500	Design of Form words	L	T	Р	С
20PSEE28	Design of Form work	3	0	0	3
Nature of Cours	Professional Elective				
Pre requisites	Knowledge in construction techniques				

The course is intended to

- 1. Gain knowledge on various formwork materials
- 2. Impart knowledge on formwork design.
- 3. Understand the special types of formwork
- 4. Acquire knowledge on fresh flying formwork
- 5. Familiarize on case study of formwork failures

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Select formwork materials as per construction needs	Understand
CO2	Adopt a methodology to design the formwork	Apply
CO3	Design the special type of formworks	Apply
CO4	Utilize the concepts of flying formwork	Understand
CO5	Become knowledgeable on formwork failures and remedial measures	Understand

Course Contents:

Unit- I Formwork Materials

9

Timber, Plywood, Steel, Aluminum, Plastic, and Accessories. Horizontal and Vertical Formwork Supports.

Unit- II Formwork Design

9

Concepts, Formwork Systems and Design for Foundations, Walls, Columns, Slab and Beams.

Unit - III Formwork Design for Special Structures

9

Shells, Domes, Folded Plates, Overhead Water Tanks, Natural Draft Cooling Tower, Bridges.

Unit- IV Fresh Flying Formwork

9

Table Form, Tunnel Form, Slip Form, Formwork for Precast Concrete, Formwork Management Issues –Pre- and Post-Award.

Unit-V Formwork Failures

9

Causes and Case studies in Formwork Failure, Formwork Issues in Multi-Story Building Construction.

Total: 45 Periods

- 1. Formwork for Concrete Structures, Peurify, Mc Graw Hill India, 2015.
- 2. Formwork for Concrete Structures, Kumar NeerajJha, Tata McGraw Hill Education, 2012. IS 14687: 1999,
- 3. Form work for Concrete Structures Guidelines, BIS

Марр	ing of	Coı	urse	Out				s) wit c Ou					tcon	nes (l	POs) Pro	gramme	
	POs									F	PSOs						
Cos	1		2	3	4	5		6	7	8	9	10	11	12	1	2	
CO1	3		3	3							3			3	3		
CO2	3		3	3							3			3	3		
CO3	3		3	3							3			3	3		
CO4	3		3	3							3			3	3		
CO5	3		3	3							3			3	3		
	3	3 High				2			Medi	um			1	Lo	w		

Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks				
Remember	Online Quiz	5					
Understand	Class Presentation/Power point presentation	5	15				
	Attendance	5					

Summative Assessment									
	Internal A	ssessment Ex	Final Examination						
Bloom's Category	IAE- I (7.5)	IAE-II (7.5)	IAE-III (10)	(60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyse									
Evaluate									
Create									

0000000	E di la la Arabata de la Desta de Constante	L	Т	Р	С
20PSEE29	Earthquake Analysis and Design of Structures	3	0	0	3
Nature of Cour	'se Professional Elective				
Pre requisites	Knowledge in structural dynamics				

The course is intended to

- 1. Learn engineering seismology.
- 2. Understand the effects of earthquake on structures
- 3. Impart knowledge on earthquake resistant design of masonry structures
- 4. Acquire knowledge on earthquake resistant design of rc structures
- 5. Understand the vibration control techniques

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Get an exposure on seismology and seismic instrumentation	Understand
CO2	Evaluate the earthquake forces as per codal provisions	Apply
CO3	Design Masonry structures against earthquake	Apply
CO4	Design earthquake resistant RCC structure	Apply
CO5	Adopt the principles of seismic base isolation technique	Knowledge

Course Contents:

Unit- I Earthquake Ground Motion

ç

Engineering Seismology (Definitions, Introduction to Seismic hazard, Earthquake Phenomenon), Seismotectonics and Seismic Zoning of India, Earthquake Monitoring and Seismic Instrumentation, Characteristics of Strong Earthquake Motion, Estimation of Earthquake Parameters, Microzonation.

Unit- II Effects of Earthquake on Structures

9

Dynamics of Structures SDOFS MDOFS - Response Spectra - Evaluation of Earthquake Forces as per codal provisions - Effect of Earthquake on Different Types of Structures - Lessons Learnt From Past Earthquakes

Unit - III Earthquake Resistant Design of Masonry Structures

9

Structural Systems - Types of Buildings - Causes of damage - Planning Considerations - Philosophy and Principle of Earthquake Resistant Design - Guidelines for Earthquake Resistant Design - Earthquake Resistant Masonry Buildings - Design consideration – Guidelines.

Unit- IV Earthquake Resistant Design of RC Structures

9

Earthquake Resistant Design of R.C.C. Buildings - Material properties - Lateral load analysis – Capacity based Design and detailing – Rigid Frames – Shear walls

Unit- V Vibration Control Techniques

(

Vibration Control - Tuned Mass Dampers - Principles and application, Basic Concept of Seismic Base Isolation - various Systems- Case Studies, Important structures.

- 1. S.Rajasekaran,"Structural Dynamics of Earthquake Engineering": Theory and application using mathematical and Matlab.,1st Edition, Woodhead publishing.2009
- 2. Pankaj Agarwal and Manish Shrikhande, "Earthquake Resistant Design of Structures", Prentice Hall of India, 2009.
- 3. Paulay,T and Priestley, M.J.N., "Seismic Design of Reinforced Concrete and Masonry buildings", John Wiley and Sons, 1992.
- 4. Duggal S K, "Earthquake Resistant Design of Structures", Oxford University Press, 2007.
- 5. Mohiuddin Ali Khan "Earthquake-Resistant Structures: Design, Build and Retrofit", Elsevier Science & Technology, 2012

Маррі	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)																
	POs											PSOs					
COs		1	2	3	4	5		6	7	8	9	10	11	12	1	2	
CO1	(3	3	3										3		2	
CO2	;	3	3	3										3		2	
CO3	;	3	3	3										3		2	
CO4	;	3	3	3										3		2	
CO5	;	3	3	3										3		2	
	3	3 High					2	2 Medium 1					Lo	W			

Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks				
Remember	Online Quiz	5					
Understand	Class Presentation/Power point presentation	5	15				
	Attendance	5					

Summative Assessment									
	Internal A	ssessment Ex	Final Examination						
Bloom's Category	IAE-I (7.5)	IAE-II (7.5)	IAE- III (10)	(60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyse									
Evaluate									
Create									