M.E APPLIED ELECTRONICS CURRICULUM AND SYLLABI Regulation - 2020

ENGINEERING COLLEGE (Autonomous)

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Accredited by NBA and NAAC with "A+"and Recognized by UGC (2f&12B)

KOMARAPALAYAM - 637303

www.excelinstitutions.com

EXCEL ENGINEERING COLLEGE

(Autonomous) Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai Accredited by NBA, NAAC with "A" and Recognised by UGC (2f &12B) KOMARAPALAYAM – 637303

DEPARTMENT OF ELECTRONICS COMMUNICATION ENGINEERING M.E – APPLIED ELECTRONICS REGULATION – 2020 CHOICE BASED CREDIT SYSTEM I TO IV SEMESTER CURRICULUM

	1-5	SEMESTER	E.						
Code No.	Course	Category	Per	iods /	Week	1	Max	cimum	Marks
oout no.	Could be	outegory	L	т	Р	С	CA	FE	Total
Theory Cou		1		61 - E			W 9		
20PMA104	Applied Mathematics for Electronics Engineers	FC	3	2	0	4	40	60	100
20PAE101	Advanced Digital System Design	· PC	3	0	0	3	40	60	100
20PAE102	Advanced Digital Signal Processing	PC	3	2	0	4	40	60	100
20PAE103	ASIC and FPGA Design	PC	3	0	0	3	40	60	100
20PEAXXX	Professional Elective I	PE	3	0	0	3	40	60	100
20PEAXXX	Professional Elective II	PE	3	0	0	з	40	60	100
Practical C	ourse								
20PAE105	Electronic System Design Laboratory	PC	0	0	4	2	50	50	100.
	Total	1 1 2	21	4	4	22	290	410	700

	II- SEM	MESTER	1						
	4	-	Per	iods	/ Week		Ma	kimum	Marks
Code No.	Course	Category	L	т	P	C	CA	FE	Total
Theory Co	urse(s)								
20PAE201	Advanced Image& Video Processing	PC	3	2	0	4	40	60	100
20PAE202	Soft Computing and Optimization Techniques	PC	3	0	0	3	40	60	100
20PAE203	Low Power VLSI	PC	3	0	0	3	40	60	100
20PAE204	Advanced Microprocessors and Microcontrollers Architectures	PC	3	0	0	3	40	60	100
20PEAXXX	Professional Elective-III	PE	3	0	0	3	40	60	100
20PEAXXX	Proféssional Elective-IV	PE	3	0	0	3	40	60	100
Employabi	lity Enhancement Courses		1						
	Term Paper Writing and Seminar	EEC	0	0	4	2	50	50	100
		Total	18	2	4	21	290	410	700

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

21 H.S.		- SEMESTER	-		-				1
Code No.	Cou	Category	Peri Wee		1	С	Ma Ma	ximun rks	n
al la	rse		L	T	P	U.	CA	FE	Tota I
Theory Cou	rse(s)								
20PEE301	Research Methodology and Intellectual Property Rights	PC	3	0	0	3	40	60	100
20PEAXXX	Professional Elective V	PE	3	0	0	3	40	60	100
20PEAXXX	Professional Elective VI	PE	- 3	0	C	3	40	60	100
Employabil	ity Enhancement Courses				-	1	10000		
20PAE301	Project Work Phase- I	EEC	0	0	12	6	50	50	100
	TOTAL		9	0	12	15	170	230	400

14 B		IV- SEMEST	TER						
Code No.	Co	Category	Peri Wee		1	с	M	aximur	n Marks
	ur se		L	т	P		CA	CA FE	
Employabilit	y Enhancement Courses								
20PAE401	Project Work Phase -II	EEC	0	0	24	12	50	50	100
		Total	0	0	24	12	50	50	100

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE = 70

CREDITS SUMMARY

C No.	Catanami	CREI	DITS PER	R SEMES	TER	Total Credit	Credits in %
S. No	Category	1	11	- 111	IV	(AICTE)	Credits in %
1	FC	4				4	6
2	PC	12	13	3	1000	28	42
3	PE	6	6	6		18	26
4	EEC		2	6	12	20	26
-	Total	22	21	15	12	70	100

FC - Foundation Course

PC - Professional Core

PE - Professional Electives

EEC - Employability Enhancement Courses

MC - Mandatory Courses (Non-Credit Courses)

CA - Continuous Assessment

FE - Final Examination

Passed in Board of studies Meeting on 28.10.2020 on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

Approved in Academic Council Meeting

	LIST OF PROF		NAL						
Code No,	Course	Cate gory		riod: Neek		с		Maxin Mar	
· · ·		1	L	т	Р	C	CA	FE	Tota
Theory Cou	rse(s)								
*	Semester I- E	lective	1					1	
20PEA001	Digital Control Engineering	PE	3	0	0	3	40	60	100
20PEA002	Computer Architecture and Parallel Processing	PE	3	0	0	3	40	60	100
20PEA003	CAD for VLSI Circuits	PE	3	0	0	3	40	60	100
20PEA004	Electromagnetic Interference and Compatibility	PE	3	0	0	з	40	60	100
20PEA005	Embedded & Real Time Systems	PE	3	0	0	3	40	60	100
6.0	Semester I- E	lective	11						
20PEA006	VLSI Design Techniques	PE	3	0	0	3	40	60	100
20PEA007	Nano Electronics	PE	3	0	0	3	40	60	100
20PEA008	Wireless Adhoc and Sensor Networks	PE	3	0	0	3	40	60	100
20PEA009	High Performance Networks	PE	3	0	0	3	40	60	100
	Semester II- E	lective	ш						
20PEA010	DSP Processor Architecture and Programming	PE	3	0	0	3	40	60	100
20PEA011	RF System Design	PE	3	0	0	3	40	60	100
20PEA012	Speech and Audio Signal Processing	PE	3	0	0	3	40	60	100
20PEA013	Internet of Things	PE	3	0	0	3	40	60	100
	Semester II- E	lective	IV						
20PEA014	Solid State Device Modeling and Simulation	PE	3	0	0	3	40	60	100
20PEA015	System on Chip Design	PE	3	0	0	3	40	60	100
20PEA016	Robotics	PE	3	0	0	3	40	60	100
20PEA017	Physical Design of VLSI Circuits	PE	3	0	0	3	40	60	100

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

	Semester II	I- Electiv	e V						
20PEA018	Signal Integrity for High Speed	PE	3	0	0	3	40	60	100
20PEA019	MEMS and NEMS	PE	3	0	0	3	40	60	100
20PEA020	Secure Computing Systems	PE	3	0	0	3	40	60	100
20PEA021	Pattern Recognition	PE	3	0	0	3	40	60	100
+:	Semester III	- Electiv	e VI			0		A	
20PEA022	RF IC Design	PE	3	0	0	3	40	60	100
20PEA023	Nano Scale Devices	PE	3	0	0	3	40	60	100
20PEA024	System-on-Chip Design	PE	3	0	0	3	40	60	100
20PEA025	Wavelets and Signal Processing	PE	3	0	0	3	40	60	100

	List of special	electives				1	211	24	
Code No.	Course	Cate gory		riod: Veek		c		Maxin Mar	
1100			L	Т	P		CA	FE	Total
Theory Cou		Elective							-
20SEA025	Human Computer Interaction	PE	3	0	0	3	40	60	100
20SEA026	Deep Learning Techniques	PE	3	0	0	3	40	60	100
20SEA027	Image Processing Applications	PE	3	0	0	3	40	60	100

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Counsil Meeting on 06.11.2020

1 112 2

M.E. Applied Electronics (R2020)

Plaam'e

I SEMESTER

20PMA104	APPLIED MATHEMATICS FOR ELECTRONICS ENGINEERS	L	т	P	С
	the second se	3	2	0	4
Nature of Cour	e Foundation Course	1			
Pre requisites	NIL	_			

Course Objectives

The course is intended to

- 1. Demonstrate various analytical skills in applied mathematics
- 2. Understand the basic concepts in , matrix theory
- Study performance of probability and random variables.
- 4. Study the mathematical areas of dynamic programming
 - 5. Study the mathematical areas queuing theory

Course Outcomes

On successful completion of the course, students will be able to

CO.No.	· Course Outcome	Level
	Select the concept of fuzzy sets, knowledge representation using fuzzy rules.	Analyzing
and with the	Sketch the various methods in matrix theory to solve system of linear equations	Apply
соз	Associate the Computation of probability and moments with standard distributions.	Understand
CO4	Infer the Mathematical areas in Dynamic Programming	Understand
CO5	Estimating the basic characteristic features of a queuing system and acquire skills in analyzing queuing models	Understand

Course Contents:

UNIT I FUZZY LOGIC

Classical logic - Multivalued logics - Fuzzy propositions - Fuzzy quantifiers.

UNIT II MATRIX THEORY

Cholesky decomposition - Generalized Eigenvectors - Canonical basis - QR factorization -Least squares method - Singular value decomposition.

UNIT III PROBABILITY AND RANDOM VARIABLES

Probability – Axioms of probability – Conditional probability – Baye's theorem - Random variables - Probability function – Moments – Moment generating functions and their properties' - Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions - Function of a Random variable.

UNIT IV DYNAMIC PROGRAMMING

Dynamic programming - Principle of optimality - Forward and backward recursion - Applications of dynamic programming - Problem of dimensionality.

UNIT V QUEUEING MODELS

Poisson Process - Markovian queues - Single and multi server models - Little's formula - Machine interference model - Steady state analysis - Self service queue.

TOTAL: 60 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Acedemic Council Meeting on 06.11.2020

12

12

12

12

12

1.Bronson, R., "Matrix Operations", Schaum's Outline Series, McGraw Hill, 2011.

- 2.George, J. Klir. and Yuan, B., "Fuzzy sets and Fuzzy logic, Theory and Applications", Prentice Hall of India Pvt. Ltd., 1997.
- 3.Gross, D., Shortle J. F., Thompson, J.M., and Harris, C. M., "Fundamentals of Queuing Theory", 4th Edition, John Wiley, 2014.
- 4.Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.
- Taha, H.A., "Operations Research: An Introduction", 9th Edition, Pearson Education, Asia, New Delhi, 2016.

1				-		1	POs			2.1			PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2										3	2	3	
CO2	3	з	2		-	1			1.1				3	2	3	
соз	3	з	2										3	2	3	
CO4	3	3	2					4					3	2	3	
CO5	3	3	2		+-								3	2	3	
100	3		Hig	gh		2	-	Me	diur	m		1	Lo	w	-	

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom or Online Quiz	5	in the second
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	1

	Continuo	Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Terminal Examination (60)
Remember	10	10	. 10	20
Understand	10	10	10	20
Apply	0	0	0	0
Analyse	30	30	30	60
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Gouncil Meeting on 06.11.2020

20PAE101	ADVANCED DIGITAL SYSTEM DESIGN	L	Т	Ρ	C
		3	0	0	3
Nature of Course	Professional Core				
Pre requisites	Fundamental of Digital System Circuits				

The course is intended

- 1. To introduce methods to analyze and design synchronous
- To introduce methods to analyze and design asynchronous sequential circuits.
- 3. To Find the fault diagnosis and testability algorithms.
- 4. To introduce the architectures of programmable devices.
- 5. To introduce design and implementation of digital circuits using programming tools.

Course Outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
C01	Analyze and design sequential synchronous circuits.	Analyzing
CO2	Analyze and design sequential Asynchronous circuits.	Analyzing
003	Design and use fault diagnosis and testability algorithms	Understand
CO4	Identify the requirements and specifications of the system required for a given application	Understand
CO5	Classify the use programming tools for implementing digital circuits of industry standards	Understand

Course Contents:

UNIT I SEQUENTIAL CIRCUIT DESIGN

Analysis of clocked synchronous sequential circuits and modeling- State diagram, state table, state table assignment and reduction-Design of synchronous sequential circuits design of iterative circuits ASM chart and realization using ASM

UNIT II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of asynchronous sequential circuit – flow table reduction-races-state assignment-transition table and problems in transition table- design of asynchronous sequential circuit-Static, dynamic and essential hazards – data synchronizers – mixed operating mode asynchronous circuits – designing vending machine controller

UNIT III FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS

Fault table method-path sensitization method – Boolean difference method-D algorithm - Tolerance techniques – The compact algorithm – Fault in PLA – Test generation-DFT schemes – Built in self test

UNIT IV SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVICES

Programming logic device families – Designing a synchronous sequential circuit using PLA/PAL – Realization of finite state machine using PLD – FPGA – Xilinx FPGA-Xilinx 4000

UNIT V SYSTEM DESIGN USING VERILOG

Hardware Modelling with Verilog HDL – Logic System, Data Types and Operators For Modeling in Verilog HDL - Behavioral Descriptions in Verilog HDL – HDL Based Synthesis – Synthesis of Finite State Machines– structural modeling – compilation and simulation of Verilog code –Test bench - Realization of combinational and sequential circuits using Verilog – Registers – counters – sequential machine – serial adder – Multiplier- Divider – Design of simple microprocessor.

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - ACADEMIC COUNCIL

ಿ

1. Charles Hurth Jr 'Fundamentals of Logic Design' Thomson Learning 2004

 M.D.Ciletti, Modeling, Synthesis and Rapid Prototyping with the Verilog HDL, Prentice Hall, 1999.

3.M.G.Arnold, Verilog Digital – Computer Design, Prentice Hall (PTR), 1999.

4.Nripendra N Biswas "Logic Design Theory" Prentice Hall of India,2001

5.Parag K.Lala "Dig.ital system Design using PLD" B S Publications, 2003

6.Parag K.Lala "Fault Tolerant and Fault Testable Hardware Design" B S Publications, 2002.

Palnitkar, Verilog HDL – A Guide to Digital Design and Synthesis, Pearson, 2003.

Mapping of Course Outcomes (COs) with Program Outcomes	(POs) Program
Specific Outcomes (PSOs)	

	1	POs									PSOs	1			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2					1					3	2	3
CO2	3	2	2										3	2	3
CO3	3	2	2						1				3	2	3
CO4	3	2	2										3	2	3
CO5	3	2	2										3	2	3
-	3	High				2	Medi	um				1	Low		103

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom or Online Quiz	5	
	Class Presentation/Power point presentation	5	15
	Attendance	5	

	Continuo	Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	0 .	0	0	0
Analyse	30	30	30	60
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

20PAE102	ADVANCED DIGITAL SIGNAL PROCESSING	L	T	P	C
4-6-	the state of the state of the state of the state of the	3	2	0	4
Nature of Course	Professional Core	79.4	0.10		1
Pre requisites	Design for digital Signal Processing		15		

Course Objectives

The course is intended

- 1. To develop the mathematical description and modeling of discrete time random signals.
- To apply the conversant with important theorems and random signal processing algorithms.
- 3. To apply Wiener filtering and Linear filtering.
- 4. To learns relevant figures of merit such as power, energy, bias and consistency.
- 5. To familiar with estimation, prediction, filtering, MultiMate concepts and techniques.

Course Outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
CO1	Apply the time domain and frequency domain description of Wide Sense Stationary process in terms of matrix algebra and relate to linear algebra concepts.	Apply
CO2	Sketch the W-K theorem, spectral factorization theorem, spectrum estimation, bias and consistency of estimators.	Apply
CO3	Explain the Linear Filtering and Wiener filtering.	Understand
CO4	Estimate LMS algorithms, Levinson recursion algorithm, applications of adaptive filters	Understand
CO5	Relate Decimation, interpolation, Sampling rate conversion, Applications of multirate signal processing	Understand

Course Contents:

UNITIDISCRETERANDOMSIGNALPROCESSING

Discrete random processes - Ensemble averages - Wide sense stationary process - Properties - Ergodic process - Sample mean & variance - Auto-correlation and Auto-correlation matricesProperties - White noise process - Weiner Khitchine relation - Power spectral density -Filtering random process - Spectral Factorization Theorem - Special types of Random Processes -ARMA, ARMA Processes - Yule-Walker equations.

UNIT II SPECTRUM ESTIMATION

Bias and Consistency of estimators - Non-Parametric methods - Periodogram - Modified Periodogram - Barlett's method - Welch's mehod - Blackman-Tukey method - Parametric methods - AR, MA and ARMA spectrum estimation - Performance analysis of estimators.

UNIT III SIGNAL MODELING AND OPTIMUM FILTERS

Introduction- Least square method - Pade approximation - Prony's method - Levinson Recursion -Lattice filter - FIR Wiener filter - Filtering - Linear Prediction - Non Causal and Causal IIR Weiner Filter - Mean square error - Discrete Kalman filter.

UNIT IV ADAPTIVE FILTERS

FIR Adaptive filters - Newton's steepest descent method - Widrow Hoff LMS Adaptive algorithm – Convergence – Normalized LMS – Applications – Noise cancellation - channel equalization echo canceller - Adaptive Recursive Filters - RLS adaptive algorithm - Exponentially weighted RLSsliding window RLS.

Passed in Board of studies Meeting on 28.10.2020 Approved in Academia Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

CHAIRMAN - ACADEMIC COUNCIL

12

12

12

UNIT V MULTIRATE SIGNAL PROCESSING

12

Decimation - Interpolation - Sampling Rate conversion by a rational factor I/D - Multistage implementation of sampling rate conversion - Polyphase filter structures - Applications of multirate signal processing.

TOTAL: 60 PERIODS

REFERENCES:

- 1. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Prentice Hall of a. India, New Delhi, 2005.
- 2.Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons Inc., New York, 2006.
- 3.P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Prentice Hall, 1992.
- 4.S. Kay," Modern spectrum Estimation theory and application", Prentice Hall, Englehood a. Cliffs, NJ1988.
- Simon Haykin, "Adaptive Filter Theory", a. Prentice Hall, Englehood Cliffs, NJ1986.
- Sophoncles J. Orfanidis, "Optimum Signal Processing ", McGraw a. -Hill, 2000.

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

		POs									PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2										3	2	3
C02	3	2	2	-				. 1					3	2	3
CO3	3	2	2			-			1	1.00	100		3	2	3
CO4	3	2	2			14	1		-				3	2	3
CO5	3	2	2										3	2	3
	3	High		-		2	Medi	um	-	12		1	Low	T	

Bloom's Level	Marks	Total marks	
Remember	Classroom or Online Quiz	5	-
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	

	Continu	ious Assessme	The second second		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Terminal Examination (60)	
Remember	10	10	10	20	
Understand	10	10	10	20	
Apply	30	30	30	60	
Analyse	0	0	0	0	
Evaluate	0	0	0	0	
Create	0	0	0	0	

Passed in Board of studies Meeting on 28.10.2020 Approved in Academic Council Meeting on 06.11.2020

20PAE103	ASIC AND FPGA DESIGN	L	T	P	C
1.1.1		3	0	0	3
Nature of Course	Professional Core	1.5	-	-	-
Pre requisites	Fundamental of VLSI			-	

Course objectives:

- To study the design flow of different types of ASIC.
- 2. To familiarize the different types of programming technologies and logic devices.
- 3. To learn the architecture of different types of FPGA.
- To gain knowledge about partitioning, floor planning, placement and routing including circuit extraction of ASIC.
- 5. To gain knowledge in issues of SOC.

Course Outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
CO1	Analyze the synthesis, Simulation and testing of systems.	Analyze
CO2	Apply different high performance algorithms in ASICs	Apply
CO3	Design Logic Synthesis and testing.	Create
CO4	Analyze the FPGA tools and Routing	Analyze
CO5	Discuss the design issues of SOC.	Understand

Course Contents:

UNIT I OVERVIEW OF ASIC AND PLD

Types of ASICs - Design flow – CAD tools used in ASIC Design – Programming Technologies: Antifuse – static RAM – EPROM and EEPROM technology, Programmable Logic Devices: ROMs and EPROMs – PLA – PAL. Gate Arrays – CPLDs and FPGAs

UNIT II ASIC PHYSICAL DESIG

System partition -partitioning - partitioning methods - interconnect delay models and measurement of delay - floor planning - placement - Routing: global routing - detailed routing - special routing circuit extraction - DRC

UNIT III LOGIC SYNTHESIS, SIMULATION AND TESTING

Design systems - Logic Synthesis - Half gate ASIC -Schematic entry - Low level design language -PLA tools -EDIF- CFI design representation. Verilog and logic synthesis -VHDL and logic synthesis - types of simulation -boundary scan test - fault simulation - automatic test pattern generation.

UNIT IV FIELD PROGRAMMABLE GATE ARRAYS

FPGA Design : FPGA Physical Design Tools -Technology mapping - Placement & routing -Register transfer (RT)/Logic Synthesis - Controller/Data path synthesis - Logic minimization.

UNIT V SOC DESIGN

System-On-Chip Design - SoC Design Flow, Platform-based and IP based SoC Designs, Basic Concepts of Bus-Based Communication Architectures. High performance algorithms for ASICs/ SoCs as case studies: Canonical Signed Digit Arithmetic, Knowledge Crunching Machine, Distributed Arithmetic, High performance digital filters for sigma-delta ADC.

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - ACADEMIC COUNCIL

. 7

1.David A.Hodges, Analysis and Design of Digital Integrated Circuits (3/e), MGH 2004 2H.Gerez, Algorithms for VLSI Design Automation, John Wiley, 1999

3 Jan. M. Rabaey et al, Digital Integrated Circuit Design Perspective (2/e), PHI 2003

4.M.J.S. Smith : Application Specific Integrated Circuits, Pearson, 2003

5.J. Old Field, R.Dorf, Field Programmable Gate Arrays, John Wiley& Sons, New york.

6.P.K.Chan& S. Mourad, Digital Design using Field Programmable Gate Array, Prentice Hall. 7.Sudeep Pasricha and NikilDutt, On-Chip Communication Architectures System on

Chip Interconnect, Elsevier, 2008

8.S.Trimberger, Edr., Field Programmable Gate Array Technology, Kluwer Academic Pub.

9.S.Brown, R.Francis, J.Rose, Z.Vransic, Field Programmable Gate Array, Kluwer

Pub. .Richard FJinder , "Engineering Digital Design,"Academic press.

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

					1		POs	1.						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	. 3	2		-				-				2	3	2	3
CO2	3	2							154			2	3	2	3
CO3	3	2										2	3	2	3
CO4	3	2		1		-	++	_	1			2	3	2	3
C05	3	2						-	3			2	3	2	3
-	3	High	-			2	Medi	um				1	Low		

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom or Online Quiz	5	
Understand	Class Presentation/Power point presentation	5	15
-	Attendance	5	i tala

-	Continu	ious Assessme	Terminal Examination	
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	(60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06,11,2020

M.E. Applied Electronics (R2020)

20PAE105	ELECTRONIC SYSTEM DESIGN LABORATORY	L	т	P	С
Contract of the second		0	0	4	2
Nature of Course	Devices and Circuits	- 101	der.		
Pre requisites	Signal Processing and Microprocessor and Microcontroller				

Course Objectives

The course is intended

- 1. To study various controllers and different interfaces
- 2. Simulation of QMF using Simulation Packages
- 3. Sensor design using simulation tools
- 4. To learn asynchronous and clocked synchronous sequential circuits
- 5. To understand the concept of built in self test and fault diagnosis

Course Outcomes

- 1. Apply PIC, MSP430, '51 Microcontroller and 8086 for system design
- 2. Simulate QMF
- 3. Design sensor using simulation tools
- 4. Design and analyze of real time signal processing system
- Design asynchronous and clocked synchronous sequential circuits.

CYCLE-1

S.No.	Course Content	со	Bloom's Level
1	System design using PIC, MSP430, '51 Microcontroller and 16- bit Microprocessor - 8086	CO1	Applying
2	Study of different interfaces (using embedded microcontroller)	CO1	Analysis
3	Implementation of Adaptive Filters and multistage multirate system in DSP Processor	CO4	Applying
4	Simulation of QMF using Simulation Packages	CO2	Analysis

CYCLE-2

S.No.	Course Content	co	Bloom's Level
1.,	Analysis of Asynchronous and clocked synchronous sequential circuits	CO5	Analysis
2	Built in self test and fault diagnosis	C04	Analysis
3	Sensor design using simulation tools	C03	Applying
4	Design and analysis of real time signal processing system – Data acquisition and signal processing	C04	Applying

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

	12						POs							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2		-	194			1	14			2	3	2	3
CO2	3	2		1	1				1			2	3	2	3
CO3	3	2			14			1				2	3	2	3
CO4	3	2							6 2			2	3	2	3
CO5	3	2		1.0						14		2	3	2	3
	3	High	1	1	19 F	2	Medi	um	1	1000		1	Low	10000	67 D

Summative assessment based on Continuous and End Semester Examination

Bloom's Level	Internal Assessment [50 marks]	End Semester Examination [50 marks]
Remember	10	10
Understand	20	20
Apply	40	40
Analyze.	30	30
Evaluate	1	
Create	-	-

Passed in Board of studies Meeting on 28.10.2020

CHAIRMAN - BOARD OF STUDIES

Approved in Academic Council Meeting on 06.11.2020

M.E. Applied Electronics (R2020)

II SEMESTER

20PAE201	ADVANCED IMAGE AND VIDEO PROCESSING	L	Т	Р	С
and the second second		3	2	0	4
Nature of Cour	e Professional Core		-		
Pre requisites	NIL	-	-	-	

Course Objective

The course is intended to

- Understand the fundamentals of digital images.
- Learn different image transforms.
- 3. Study concept of segmentation.
- 4. Study the enhancement and image compression.
- 5. Study the basic concepts of video processing

Course Outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
CO1	Analyze the fundamental concepts of digital image processing.	Analyzing
CO2	Apply the different types of image transforms.	Apply
CO3	Apply different algorithms for segmenting gray level images.	Apply
CO4	Interpret the concept of image enhancement in color imaging	Understand
	Analyze the various concept of video processing	Analyze

Course Contents:

NIT-I DC IMAGE FUNDAMENTALS

A simple image model, Sampling and Quantization, Imaging Geometry, Digital Geometry, Image Acquisition Systems, Different types of digital images. Basic concepts of digital distances, distance transform, medial axis transform, component labeling, thinning, morphological processing, extension to gray scale morphology

UNIT-II IMAGE TRANSFORMS

1D DFT, 2D transforms - DFT, DCT, Discrete Sine, Walsh, Hadamard, Slant, Haar, KLT, SVD, Wavelet transform

UNITIII SEGMENTATION OF GRAY LEVEL IMAGES

Histogram of gray level images, multilevel thresholding, optimal thresholding using Bayesian classification, Watershed and Dam Construction algorithms for segmenting graylevel image. Detection of edges and lines: First order and second order edge operators, multi-scale edge detection, Canny's edge detection algorithm, Hough transform for detecting lines and curves, edge linking.

UNITIVIMAGEENHANCEMENTANDCOLORIMAGEPROCESSING

Point processing, Spatial Filtering, Frequency domain filtering, multi-spectral image enhancement, image restoration. Color Representation, Laws of color matching, chromaticity diagram, color enhancement, color image segmentation, color edge detection, color demos icing.

UNIT V BASIC STEPS OF VIDEO PROCESSIN

Analog video, Digital Video, Time varying Image Formation models: 3D motion models, Geometric Image formation, Photometric Image formation, sampling of video signals, filtering operations.

TOTAL : 60 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

CHAIRMAN - ACADEMIC COUNCIL

14

12

12

12

TEXT BOOKS

1.Gonzaleze and Woods , "Digital Image Processing ", 3rd edition , Pearson.

 Yao Wang, JoemOstarmann and Ya – quin Zhang, "Video processing and communication ",1st edition, PHI.

REFERENCE BOOKS

1.A.K. Jain, "Fundamentals of Digital Image Processing", Prentice-Hall, Addison- Wesley, 1989.

 Jähne, "Practical Handbook on Image Processing for Scientific Applications", CRC Press, 1997.

Bernd Jähne, Digital Image Processing, Springer-Verlag Berlin Heidelberg2005.
 Bovik (ed.), "Handbook of Image and Video Processing", AcademicPress, 2000.
 Bovik (Ed.), "Handbook of Image and Video Processing", AcademicPress, 2000.

5. W. K. Pratt. Digital image processing, PIKS Inside. Wiley, New York, 3rd, edn., 2001

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific
Outcomes (PSOs)
POs
PSOs

														P308	
COs	1	2	3	• 4	5	6	7	8	9	10	11	12	1	2	3
C01	3	3										2	3	2	3
CO2	3	3					1					2	3	2	3
CO3	3	2					-					2	3	2	3
C04	3	2										2	. 3	2	3
C05	3	2						1				2	3	2	3
1	3	High	2	201		2	Medi	um		1		1	Low		-

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom or Online Quiz	5	1
Understand	Class Presentation/Power point presentation	5	15
12 1	Attendance	5	

Contraction to 2	Continuo	ous Assessme	Terminal	
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	- 30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	-0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 05.11.2020

CHAIRMAN - BOARD OF STUDIES

CHAIRMAN - ACADEMIC COUNCIL

20PAE202	SOFT COMPUTING AND OPTIMIZATION	L	т	P	с
	TECHNIQUES	3	0	0	3
Nature of Course	Professional Core	1.4	-	-	-
Pre requisites	Fundamentals of Basic Mathematics and Data Analysis	-	-	-	-

Course Objectives

The course is intended to

- Familiarizes with the design of various neural networks.
- 2. Understand the concept of fuzzy logic.
- 3. Explore the knowledge Neuro Fuzzy modeling and control.
- Gain knowledge in conventional optimization techniques.
- Understand the various evolutionary optimization techniques.

Course Outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
CO1	Understand the different types of neural networks.	Understand
CO2	Identify the Fuzzy relations and Fuzzy expert systems	Understand
CO3	Determine the properties of field effect transistors	Understand
CO4	Analyze the concepts of Neuro-Fuzzy modeling	Analyze
CO5	Apply the evolutionary optimization techniques	Apply

Course Contents

Unit-I NEURAL NETWORKS

Machine Learning using Neural Network, Learning algorithms, Supervised Learning Neural Networks – Feed Forward Networks, Radial Basis Function, Unsupervised Learning Neural Networks – Self Organizing map, Adaptive Resonance Architectures, Hopfield network.

Unit-II FUZZY LOGIC

Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations – Membership Functions- Fuzzy Rules and Fuzzy Reasoning – Fuzzy Inference Systems – Fuzzy Expert Systems – Fuzzy Decision Making

Unit-III NEURO-FUZZY MODELING

Adaptive Neuro-Fuzzy Inference Systems – Coactive Neuro-Fuzzy Modeling – Classification and Regression Trees – Data Clustering Algorithms – Rule base Structure Identification – Neuro-Fuzzy Control – CaseStudies.

Unit-IV CONVENTIONAL OPTIMIZATIONTECHNIQUES

Introduction to optimization techniques, Statement of an optimization problem, classification, Unconstrained optimization-gradient search method-Gradient of a function, steepest gradientconjugate gradient, Newton's Method, Marquardt Method, Constrained optimization -sequential linear programming, Interior penalty function method, external penalty function method.

Unit-V EVOLUTIONARY OPTIMIZATION TECHNIQUES

Genetic algorithm – Working principle, Basic operators and terminologies, Building block hypothesis, Traveling salesman problem, Particle swarm optimization, Ant colony optimization.

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

CHAIRMAN - ACADEMIC COUNCIL

TOTAL: 45 PERIODS

TEXT BOOKS

1. David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, 2009.Hill Inc.2012.

2. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic-Theory and Application, Prentice Hall, 1995.

REFERENCE BOOKS

- 1. James A. Freeman and David M. Skapura, Neural Networks Algorithms, Applications, and Programming Techniques, Pearson Edn., 2003.
- 2. Timothy J.Ross, Fuzzy Logic with Engineering Applications, McGraw-Hill, 1997.

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs) **PSOs** POs COs 4 5 CO1 CO2 CO3 CO4 Ż CO5 2 Medium Low High

Formative as Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom / Online Quiz/Group discussion	5	
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	

·	Continuo	Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020 Approved in Academic Council Meeting on 06.11.2020

20PAE203	LOW POWER VLSI DESIGN	L	т	Ρ	c
and a second		3	0	0	3
Nature of Course	Professional Core		discope	haddon	
Pre requisites	Fundamentals of Electronics	Charles and a second			

Course Objectives

The course is intended to

- 1. Identify sources of power in an IC
- Identify the power reduction techniques based on technology independent and Technology dependent
- 3. Power dissipation mechanism in various MOS logic style.
- Identify suitable techniques to reduce the power dissipation
- 5. Design memory circuits with low power dissipation.

Course Outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
CO1	Analyze the power dissipation in CMOS circuits.	Analyze
CO2	Understand the various concepts of power optimization techniques	Understand
CO3	Design of Low power CMOS circuits	Apply
CO4	Analyze the power estimation techniques	Analyze
CO5	Software design for low power dissipation circuits	Apply

Course Contents

Unit-I POWER DISSIPATION IN CMOS

Physics of power dissipation in CMOS FET devices – Hierarchy of limits of power – Sources of power consumption – Static Power Dissipation, Active Power Dissipation - Designing for Low Power, Circuit Techniques For Leakage Power Reduction - Basic principle of low power design.

Unit-II POWER OPTIMIZATION

Logic level power optimization – Circuit level low power design – Standard Adder Cells, CMOS Adders Architectures-BiCMOS adders - Low Voltage Low Power Design Techniques, Current Mode Adders -Types Of Multiplier Architectures, Braun, Booth and Wallace Tree Multipliers and their performance comparison

Unit-III DESIGN OF LOW POWER CMOS CIRCUITS

Computer arithmetic techniques for low power system – low voltage low power static Random access and dynamic Random access memories – low power clock, Inter connect and layout design – Advanced techniques – Special techniques.

Unit-IV POWER ESTIMATION

Power Estimation techniques - logic power estimation - Simulation power analysis - Probabilistic power analysis.

Unit-V SYNTHESIS AND SOFTWARE DESIGN FOR LOW POWER

Synthesis for low power - Behavioral level transform - software design for low power.

TOTAL : 45 PERIODS

9

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

TEXT BOOKS

1. AbdelatifBelaouar, Mohamed I.Elmasry, "Low power digital VLSI design", Kluwer, 1995.

2. A.P. Chandrasekaran and R.W.Broadersen, "Low power digital CMOS design", Kluwer, 1995

REFERENCE BOOKS

 DimitriosSoudris, C.Pignet, Costas Goutis, "Designing CMOS Circuits for Low power"Kluwer, 2002.

2.Gary Yeap, "Practical low power digital VLSI design", Kluwer, 1998.

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

COs		POs												PSOs		
cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3	2										3	2	2	
CO2	3	3	2					1		131		1	3	2	2	
CO3	2	3	2										3	2	2	
CO4	3	2	2	. 61									3	2	2	
CO5	3	3	2				1	1	12		17		3	2	2	
12	3	High				2	Medi	um		-		1	Low			

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom / Online Quiz/Group discussion	. 5	
Understand -	Class Presentation/Power point presentation	5	15
COLOC DE LA	Attendance	5	1

Die serie Categorie	Continuo	Terminel		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	 Terminal Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meetington 06, 11, 2020

20PAE204	ADVANCED MICROPROCESSORS AND	L	Т	P	C
in the second	MICROCONTROLLERS ARCHITECTURES	3	0	0	3
Nature of Course	Professional Core				-
Pre requisites	Fundamentals of Microprocessor and Microcontroller	Sec. 1			

Course Objectives

The course is intended to

- Familiarize about the features, specification and features of modern microprocessors.
- Gain knowledge about the architecture of Intel 32 and 64 bit microprocessors and salient features
 - associated with them.
- Understand the RISC and ARM architectures.
- Extract the feature of modern microprocessors
- 5. Describe high performance microcontroller architectures.

Course Outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
CO1	Describe the features of modern microprocessors	Knowledge
CO2	Explain the concept of high performance CISC architecture	Understand
CO3	Describe the concept of high performance RISC and ARM architecture	Understand
CO4	Identify the different features of modern microcontrollers.	Understand
CO5	Outline the characteristics ARM – M3 architecture and its salient features.	Understand

Course Contents

Unit-I FEATURES OFMODERN MICROPROCESSORS

Evolution of microprocessors - Data and Address buses - clock speed - memory interface - multicore architectures - cache memory hierarchy - operating modes - super scaler execution dynamic execution - over clocking - integrated graphics processing - performance benchmarks.

Unit-II HIGH PERFORMANCECISCARCHITECTURES

Introduction to IA 32 bit architecture - Intel Pentium Processors family tree - Memory Management Branch prediction logic - Superscalar architecture – Hyper threading technology – 64 bit extension. technology - Intel 64 bit architecture - Intel Core processor family tree - Turbo boost technology -Smart cache - features of Nehalem micro architecture.

Unit-III HIGH PERFORMANCE RISC ARCHITECTURE-ARM

RISC architecture merits and demerits - The Program's model of ARM Architecture - 3- stage pipeline ARM organization - 3-stage pipeline ARM organization - ARM instruction execution -Salient features of ARM instruction set - ARM architecture profiles (A, R and M profiles).

Unit-IV FEATURES OFMODERN MICROPROCESSORS

Introduction to microcontrollers - microcontroller vs microprocessors - microcontroller architecture -Processor Core - Memory interfaces- Communication interfaces (SPI,I²C, USB and CAN) - ADC -PWM – Watchdog timers – Interrupts – Debugging interfaces.

Passed in Board of studies Meeting on 28.10.2020 Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

Unit-V HIGH PERFORMANCEMICROCONTROLLERARCHITECTURES

Introduction to the Cortex-M Processor Family - ARM 'Cortex-M3' architecture for microcontrollers – Thumb 2 instruction technology – Internal Registers - Nested Vectored Interrupt controller - Memory map - Interrupts and exception handling – Applications of Cotex-M3 architecture.

TOTAL: 45 PEROIODS

9

TEXT BOOKS

Barry, B. Breg," The Intel Microprocessors", PHI,2008
 Gene, H.Miller," Micro Computer Engineering," Pearson Education, 2003.

REFERENCE BOOKS

Intel Inc, "Intel 64 and IA-32 Architectures Developer's Manual", Volume-I, 2016
 Steve Furber, " ARM System –On –Chip architecture "Addision Wesley, 2000

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

							POs			1			PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3		3							_	1	3	2	2	
CO2	3	3		3						1		1	3	2	2	
CO3	2	3		2								1	3	2	2	
CO4	3	2		3								1	3	2	2	
· CO5	• 3	3		3	lage .			1			-	2	3	2	2	
	3	High	È.			2	Medi	um				1	Low	-		

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom / Online Quiz/Group discussion	. 5	1000
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	

	Summa	ative Assessment		
	Cor	ntinuous Assessm	ent Tests	Terminal
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

20045205	TERM PAPER WRITING AND SEMINAR	L	T	P	С
20PAE205	TERMI PAPER WRITING AND SEMINAR	0	0	4	2
Nature of Course	Professional Core			-	
Pre requisites	Document writing				

Course Objectives

In this course, students will develop their scientific and technical reading and writing skills that they need to understand and construct research articles.

A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas.

The work involves the following steps:

- 1. Selecting a subject, narrowing the subject into a topic
- 2. Stating an objective.
- 3. Collecting the relevant bibliography (atleast 15 journal papers)
- 4. Preparing a working outline.
- Studying the papers and understanding the authors contributions and critically analysing each paper.
- 6. Preparing a working outline
- 7. Linking the papers and preparing a draft of the paper.
- 8. Preparing conclusions based on the reading of all the papers.
- 9. Writing the Final Paper and giving final Presentation

Please keep a file where the work carried out by you is maintained.

dan 1		-		7. Y	-	P	Os	-						PSO	3
Cos	1.	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	3	3	3	3	19		1	3	3	2	1	3	2	2
CO2	3	3	3	3	3				3	3	2	1	3	2	2
CO3	3	3	3	3	3				3	. 3	2	1	3	2	2
CO4	3	3	3	3	3				3	3	2	1	3	2	2
CO5	3	3	3	3	3		-	1	3	3	2	1	3	2	2
*	3		Hi	gh		2		N	Aediu	m		1	-	Low	2

Remember 30 30 Understand 70 70	Bloom's Level	Rubric based Continuous Assessment [50 marks]	End Semester Examination [50 marks]
Apply 70 70 70	Remember		30
(PP)	Understand		
	Apply	70	70
Analyze	Analyze	2.	
	Evaluate		

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

PROFESSIONAL ELECTIVE

20PEA001	DIGITAL CONTROL ENGINEERING	L	т	P	С
		3	0	0	3
Nature of Course	Elective Core	2.2			
Pre requisites	Embedded System		. 1		

Course Objectives:

1. To learn the principles of PI, PD, PID controllers.

2 To analyses time and frequency response discrete time control system.

3. To familiar with digital control algorithms,

4.To have the knowledge to implement PID control algorithms.

5. To design the Digital controllers

Course Outcomes

On successful completion of the course, students will be able to

Course Outcome	Bloom's Level
Describe continuous time and discrete time controllers analytically	Knowledge
Define and state basic analog to digital and digital to analog conversion principles	Understand
Analyze sampled data control system in time and frequency domains	Analyze
Illustrate schemes for practical implementation of temperature and motor control systems	Apply
Design simple PI, PD, PID continuous and digital controllers	Create
	Describe continuous time and discrete time controllers analytically Define and state basic analog to digital and digital to analog conversion principles Analyze sampled data control system in time and frequency domains Illustrate schemes for practical implementation of temperature and motor control systems

Course Contents

UNIT I CONTROLLERS IN FEEDBACK SYSTEMS

Review of frequency and time response analysis and specifications of first order and second order feedback control systems, need for controllers, continuous time compensations, continuous time PI, PD, PID controllers, digital PID controllers.

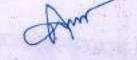
UNIT II BASIC DIGITAL SIGNAL PROCESSING IN CONTROL SYSTEMS

Sampling theorem, quantization, aliasing and quantization error, hold operation, mathematical model of sample and hold, zero and first order hold, factors limiting the choice of sampling rate, reconstruction.

UNIT III MODELING OF SAMPLED DATA CONTROL SYSTEM

Difference equation description, Z-transform method of description, pulse transfer function, time and frequency response of discrete time control systems, stability of digital control systems, Jury's stability test, state space description, first companion, second companion, Jordan canonical models, discrete state variable models (elementary principles only).

UNIT IV DESIGN OF DIGITAL CONTROL ALGORITHMS


Review of principle of compensator design, Z-plane specifications, digital compensator design using frequency response plots, discrete integrator, discrete differentiator, development of digital PID controller, transfer function, design in the Z-plane.

UNIT V PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS

Algorithm development of PID control algorithms, standard programmes for microcontroller implementation, finite word length effects, choice of data acquisition systems, microcontroller based temperature control systems, microcontroller based motor speed control systems, DSP implementation of motor control system.

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020 Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

 John J. D'Azzo, "Constantive Houpios, Linear Control System Analysis and Design", Mc Graw Hill, 1995.

 Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996.

3. M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delhi, 1997.

							POs	£	0	1	-			PSOs	
COs	. 1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3		3					-		1	1	3	2	2
° CO2	3	3		3								1	3	2	2
CO3	2	3		2	12		-		1			1	3	2	2
C04	3	2		3								1	3	2	2
CO5	3	3		3				8.				2	3	2	2
-	3	High		-		2	Medi	um	11. 3			1	Low		

Formative as Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom / Online Quiz/Group discussion	5	
Understand.	Class Presentation/Power point presentation	5	15
	Attendance	5	1

		ative Assessment	AND THE OWNER	
	Cor	ent Tests	Terminal	
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

20PEA002	00	IPUTER ARCHITECTURE AND PARALLEL PROCESSING	L	Т	Ρ	C
	CON	PUTER ARCHITECTORE AND PARALLEEP ROOLSONG	3	0	0	3
Nature of Co	ourse	Elective core		_		
Pre requisites		Computer Architecture and Organization	-			

Course Objectives:

1. To Understand the difference between pipeline and parallel processing concepts

2. To Study various types of processor architectures and the importance of scalable architectures

3. To Study Memory Architectures, Memory Technology and Optimization.

4. To discuss about multiprocessor and its applications

5. To discuss about multicore Architectures

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Explain design of memory hierarchies	Understand
CO2	Understand the various process architectures	Understand
CO3	Infer the memory architecture and Optimization techniques.	Analyze
CO4	Assess Performance Issues and Synchronization issues	Evaluate
CO5	Compare multicore architectures	Analyze
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Course Contents

UNIT I COMPUTER DESIGN AND PERFORMANCE MEASURES

Fundamentals of Computer Design – Parallel and Scalable Architectures – Multiprocessors – Multivector and SIMD architectures – Multithreaded architectures – Stanford Dash multiprocessor – KSR1 - Data-flow architectures - Performance Measures

UNIT II PARALLEL PROCESSING, PIPELINING AND ILP

Instruction Level Parallelism and Its Exploitation - Concepts and Challenges - Pipelining processors - Overcoming Data Hazards with Dynamic Scheduling – Dynamic Branch Prediction - Speculation -Multiple Issue Processors - Performance and Efficiency in Advanced Multiple Issue Processors

UNIT III MEMORY HIERARCHY DESIGN

Memory Hierarchy - Memory Technology and Optimizations - Cache memory - Optimizations of Cache Performance - Memory Protection and Virtual Memory - Design of Memory Hierarchies.

UNIT IV MULTIPROCESSORS

Symmetric and distributed shared memory architectures – Cache coherence issues – Performance Issues – Synchronization issues – Models of Memory Consistency - Interconnection networks – Buses, crossbar and multi-stage switches.

UNIT V MULTI-CORE ARCHITECTURES

Software and hardware multithreading – SMT and CMP architectures – Design issues – Casestudies – Intel Multi-core architecture – SUN CMP architecture – IBM cell architecture – hp architecture.

TOTAL : 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - ACADEMIC COUNCIL

.

 David E. Culler, Jaswinder Pal Singh, "Parallel Computing Architecture: A hardware/ software approach", Morgan Kaufmann / Elsevier, 1997

 Dimitrios Soudris, Axel Jantsch, "Scalable Multi-core Architectures: Design Methodologies and Tools", Springer, 2012

3. Hwang Briggs, "Computer Architecture and parallel processing", McGraw Hill, 1984.

 John L. Hennessey and David A. Patterson, "Computer Architecture – A quantitative approach", Morgan Kaufmann / Elsevier, 4th. edition, 2007

5. John P. Hayes, "Computer Architecture and Organization", McGraw Hill

6. John P. Shen, "Modern processor design. Fundamentals of super scalar processors", Tata McGraw Hill 2003

7. Kai Hwang, "Advanced Computer Architecture", McGraw Hill International, 2001

 William Stallings, "Computer Organization and Architecture – Designing for Performance", Pearson Education, Seventh Edition, 2006

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

COs	Ì	POs									PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
. CO1	2	3		3							100	1	3	2	2
CO2	3	3		3				1		1		1	3	2	2
CO3	2	3	1	2								1	3	2	2
CO4	3	2		3								1	3	2	2
CO5	3	3		3				-	1			2	3	2	2
	3	High				2	Medi	um				1	Low	-	

Formative as	sessment	1	Tatal	
Bloom's Level	Assessment Component	Marks	Total marks	
Remember	Classroom / Online Quiz/Group discussion	5	-	
Understand	and the second sec	5	15	
	Attendance	5		

		tive Assessment tinuous Assessm		
	Cor	Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	. 10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

20PEA003		. L	Т	P	С
	CAD FOR VLSI CIRCUITS	3	0	0	3
Nature of Course	Elective core	19 - 19 (19 - 19 - 19 - 19 - 19 - 19 - 1	-	1	10
Pre requisites	VLSI Design		_	_	-

Course objectives:

To study various physical design methods in VLSI.

To understand the concepts behind the VLSI design rules and routing techniques.

3. To understand the concepts of various algorithms used for floor planning and routing techniques.

4. To Simulate the logic synthesis

5. To Evaluate in High Level Synthesis.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Simulate techniques at various levels in VLSI design flow	Apply
CO2	Discuss the concepts of floor planning and routing	Understand
CO3	Outline high level synthesis	Analyze
CO4	Understand the logic syntheis	Understand
CO5	Evaluate the high Level Synthesis	Evaluate

Course Contents

UNIT I INTRODUCTION TO VLSI DESIGN FLOW

Introduction to VLSI Design methodologies, Basics of VLSI design automation tools, Algorithmic Graph Theory and Computational Complexity, Tractable and Intractable problems, General purpose methods for combinatorial optimization.

UNIT II LAYOUT, PLACEMENT AND PARTITIONING

Layout Compaction, Design rules, Problem formulation, Algorithms for constraint graph compaction, Placement and partitioning, Circuit representation, Placement algorithms, Partitioning

UNIT III FLOOR PLANNING AND ROUTING

Floor planning concepts, Shape functions and floorplan sizing, Types of local routing problems, Area routing, Channel routing, Global routing, Algorithms for global routing.

UNIT IV SIMULATION AND LOGIC SYNTHESIS

Simulation, Gate-level modeling and simulation, Switch-level modeling and simulation, Combinational Logic Synthesis, Binary Decision Diagrams, Two Level Logic Synthesis.

UNIT V HIGH LEVEL SYNTHESIS

Hardware models for high level synthesis, internal representation, allocation, assignment and scheduling, scheduling algorithms, Assignment problem, High level transformations.

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

 N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, 2002.

 S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002. Sadiq M. Sait, Habib Youssef, "VLSI Physical Design automation: Theory and Practice", World scientific 1999. Steven M.Rubin, "Computer Aids for VLSI Design", Addison Wesley Publishing 1987.

COs							POs	-	_					PSOs	-
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3		3								1	3	2	2
CO2	3	3		3			2				-	1	3	2	2
CO3	2	3		2			1		4) 4)		5	1	3	2	2
CO4	3	2	1	3								1	3	2	2
CO5	3	3		3								2	3	2	2
	3	High		- 3001	-	2	Medi	um				1	Low		

Formative as	sessment	11 a	
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom / Online Quiz/Group discussion	5	1.1
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	

	Summa	ative Assessment	6	
	Cor	Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	. 0	0	0	0 .
Evaluate	0	0	0	0
Create	0	0 +	0	0

Passed in Board of studies Meeting on 28.10.2020

CHAIRMAN - BOARD OF STUDIES

Approved in Academic Council Meeting on 06.11.2020

M.E. Applied Electronics (R2020)

20PEA004		CTROMAGNETIC INTERFERENCE AND COMPATIBILITY	L	т	Ρ	С
	- Lib	EO INGINACITE NO INTERI ERENCE AND COMPANDIENT				3
Nature of Co	ourse	Elective core	-	-		-
Pre requisites RFand Microwave Engineering		RFand Microwave Engineering		1		

Course Objectives:

The students should be made to be familiar with:

1. The basics of EMI , EMI sources EMI problems .

- 2. To give the basic Solutions methods in PCB.
- 3. To understand the Measurements techniques for emission.
- 4. To identify the Measurement techniques for immunity.
- 5. To identify the Test methods and Instrumentation.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	. Course Outcome	Bloom's Level
CO1	Identify Standards of EMI	Apply
CO2	Compare EMI test methods	Understand
CO3	Discuss EMI mitigation techniques	Understand
CO4	Discuss Standard and Regulation	Understand .
CO5	Evaluate the Test Methods	Evaluate

Course Contents

UNIT I BASIC THEORY

Introduction to EMI and EMC, Intra and inter system EMI, Elements of Interference, Sources and Victims of EMI, Conducted and Radiated EMI emission and susceptibility, Case Histories, Radiation hazards to humans, Various issues of EMC, EMC Testing categories EMC Engineering Application.

UNIT II COUPLING MECHANISM

Electromagnetic field sources and Coupling paths, Coupling via the supply network, Common mode coupling, Differential mode coupling, Impedance coupling, Inductive and Capacitive coupling, Radioactive coupling, Ground loop coupling, Cable related emissions and coupling, Transient sources, Automotive transients.

UNIT III EMI MITIGATION TECHNIQUES

Working principle of Shielding and Murphy's Law, LF Magnetic shielding, Apertures and shielding effectiveness, Choice of Materials for H, E, and free space fields, Gasketting and sealing, PCB Level shielding, Principle of Grounding, Isolated grounds, Grounding strategies for Large systems, Grounding for mixed signal systems, Filter types and operation, Surge protection devices, Transient Protection.

UNIT IV STANDARD AND REGULATION

Need for Standards, Generic/General Standards for Residential and Industrial environment, Basic Standards, Product Standards, National and International EMI Standardizing Organizations; IEC, ANSI, FCC, AS/NZS, CISPR, BSI, CENELEC, ACEC. Electro Magnetic Emission and susceptibility standards and specifications, MIL461E Standards

UNIT V EMI TEST METHODS AND INSTRUMENTATION

Fundamental considerations, EMI Shielding effectiveness tests, Open field test, TEM cell for immunity test, Shielded chamber, Shielded anechoic chamber, EMI test receivers, Spectrum analyzer, EMI test wave simulators, EMI coupling networks, Line impedance stabilization networks, Feed through capacitors, Antennas, Current probes, MIL -STD test methods, Civilian STD test methods.

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

 Bemhard Keiser, "Principles of Electromagnetic Compatibility", 3rd Ed, Artech house, Norwood, 1986.

2. Clayton Paul, "Introduction to Electromagnetic Compatibility", Wiley Interscience, 2006.

 Daryl Gerke and William Kimmel, "EDN's Designer's Guide to Electromagnetic Compatibility", Elsevier Science & Technology Books, 2002

4. Dr Kenneth L Kaiser, "The Electromagnetic Compatibility Handbook", CRC Press 2005.

Electromagnetic Compatibility by Norman Violette , Published by Springer, 2013

 Electromagnetic Interference and Compatibility: Electrical noise and EMI specifications Volume 1 of A Handbook Series on Electromagneti Interference and Compatibility, Donald R. J. White Publisher-Don white consultants Original from the University of Michigan Digitized 6 Dec 2007
 Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons Inc, Newyork, 2009

V Prasad Kodali, "Engineering Electromagnetic Compatibility", IEEE Press, Newyork, 2001.
 W Scott Bennett, "Control and Measurement of Unintentional Electromagnetic Radiation", John Wiley & Sons Inc., (Wiley Interscience Series) 1997.

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

COs	1			_	38		POs		-				PSOs			
cos	1 2 3 4 5					6	7	8	9	10	11	12	1	2	3	
CO1	2	3		3								1	3	2	2	
CO2	3	3		3					ti			1	З.	2	2	
CO3	2	3		2		11						1	3	2	2	
C04	3	2		- 3								1	3	2	2	
CO5	3	3		3				-				2	3	2	2	
10.5	3	High				2	Medi	um				1	Low			

Bloom's Level	Accorement Component		Total marks
Remember	Classroom / Online Quiz/Group discussion	5	
Understand	Class Presentation/Power point presentation	5	15
1	Attendance	5	2.44

11 The 11 The 11	Summa	ative Assessment		and the second
N	Co	ntinuous Assessm	ent Tests	Terminal
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

20PEA005	Embedded & Real Time Systems	L	Т	Ρ	С
8		3	0	0	3
Nature of Course	Professional Core				
Pre requisites	Fundamental of Embedded Systems				1

Course Objectives

The course is intended

- 1. To Learn design challenges and design methodologies
- 2. To Study general and single purpose processor
- 3. To Understand bus structures
- 4. To gain knowledge about State Machine and Concurrent process models
- 5. To gain knowledge in embedded tools.

Course Outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
CO1	Analyze the design methodologies	Analyzing
CO2	Apply various types of single processor	Apply
CO3	Discuss about the bus structure	Understand
and the second se	Design the State machine and process models	Understand
and the second	Discuss the design embedded tools	Understand

Course Contents:

UNIT I EMBEDDED SYSTEM OVERVIEW

Embedded System Overview, Design Challenges – Optimizing Design Metrics, Design Methodology, RT-Level Combinational and Sequential Components, Optimizing Custom Single-Purpose Processors.

UNIT II GENERAL AND SINGLE PURPOSE PROCESSOR

Basic Architecture, Pipelining, Superscalar and VLIW architectures, Programmer's view, Development Environment, Application-Specific Instruction-Set Processors (ASIPs) Microcontrollers, Timers, Counters and watchdog Timer, UART, LCD Controllers and Analog-to-Digital Converters, Memory Concepts.

UNIT III BUS STRUCTURES

Basic Protocol Concepts, Microprocessor Interfacing – I/O Addressing, Port and Bus-Based I/O, Arbitration, Serial Protocols, I2C, CAN and USB, Parallel Protocols – PCI and ARM Bus, Wireless Protocols – IrDA, Bluetooth, IEEE 802.11.

UNIT IV STATE MACHINE AND CONCURRENT PROCESS MODELS

Basic State Machine Model, Finite-State Machine with Datapath Model, Capturing State Machine in Sequential Programming Language, Program-State Machine Model, Concurrent Process Model, Communication among Processes, Synchronization among processes, Dataflow Model, Real-time Systems, Automation: Synthesis, Verification : Hardware/Software Co-Simulation, Reuse: Intellectual Property Cores, Design Process Models.

UNIT V EMBEDDED SOFTWARE DEVELOPMENT TOOLS AND RTOS

Compilation Process – Libraries – Porting kernels – C extensions for embedded systems – emulation and debugging techniques - RTOS - System design using RTOS.

TOTAL: 45 PERIODS

9

Pessed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

 Bruce Powel Douglas, "Real time UML, second edition: Developing efficient objects for embedded systems", 3rd Edition 1999, Pearson Education.

Daniel W. Lewis, "Fundamentals of embedded software where C and assembly meet", Pearson Education, 2002.

3. Frank Vahid and Tony Gwargie, "Embedded System Design", John Wiley & sons, 2002.

4. Steve Heath, "Embedded System Design", Elsevier, Second Edition, 2004.

		POs												PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2						219				2	3	2	3		
CO2	3	2				1						2	3	2	3		
CO3	3	2					-	1	-9			2	3	2	3		
CO4	3	2	2							2		2	3	2	3		
CO5	3	2		. 1			1.1					2	3	2	3		
	3	Hig	h		1	2	Media	um	-			1	Low		-		

Bloom's Level	Assessment Component	Marks	Total marks	
Remember	emember Classroom or Online Quiz		-	
Understand	Class Presentation/Power point presentation	5	15	
	Attendance	5		

Summative Assessment	and the second	ous Assessme	ant Tosts	and the second sec
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Terminal Examinatio n (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0 .	0	0	0
Evaluate	0	0	0	0
Create	0	0	. 0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

20PEA006	VLSI DESIGN TECHNIQUES	L	T	Ρ	C
LAUPEROVO		3	0	0	3
Nature of Course	Elective core	1.00		-	-
Pre requisites	VLSI Design	-			

Course Objectives:

- 1. To Find the Transistor level design of all the digital building blocks common to all CMOS
- 2. To find the microprocessors, DPSs, network processors, digital backend of all wireless systems
- To focus on the transistor level design and will address all important issues
- 4. To classify the important building and will introduce the principles and design methodology
- 5. To terms of the dominant circuit choices, constraints and performance measures

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level					
CO1	CO1 Demonstration the transistor level design of the most important building blocks used in digital CMOS VLSI circuits						
CO2	Discuss the design methodology of arithmetic building block	Understand					
CO3	Analyze the tradeoffs of the various circuit choices for each of the building block	Analyze					
CO4	Understand the principles of design methodology	Understand					
CO5	Understand the dominant circuit choices, constraints and performance measures	Understand					

Course Contents:

UNIT I MOS TRANSISTOR PRINCIPLES AND CMOS INVERTER

MOS(FET) Transistor Characteristic under Static and Dynamic Conditions, MOS Transistor Secondary Effects, Process Variations, Technology Scaling, Internet Parameter and electrical wise models CMOS Inverter - Static Characteristic, Dynamic Characteristic, Power, Energy, and Energy Delay parameters.

UNIT II COMBINATIONAL LOGIC CIRCUITS

Propagation Delays, Stick diagram, Layout diagrams, Examples of combinational logic design, Elmore's constant, Dynamic Logic Gates, Pass Transistor Logic, Power Dissipation, Low Power Design principles.

UNIT III SEQUENTIAL LOGIC CIRCUITS

Static Latches and Registers, Dynamic Latches and Registers, Timing Issues, Pipelines, Pulse and sense amplifier based Registers, Nonbistable Sequential Circuits.

UNIT IV ARITHMETIC BUILDING BLOCKS AND MEMORY ARCHITECTURES

Data path circuits, Architectures for Adders, Accumulators, Multipliers, Barrel Shifters, Speed and Area Tradeoffs, Memory Architectures, and Memory control circuits.

UNIT V INTERCONNECT AND CLOCKING STRATEGIES

Interconnect Parameters - Capacitance, Resistance, and Inductance, Electrical Wire Models, Timing classification of Digital Systems, Synchronous Design, Self-Timed Circuit Design.

TOTAL : 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - ACADEMIC COUNCIL

12

12

errore e paperere accesses access proces

6

1. Jacob Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEE Press 2010.

2. Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Prentice Hall of India 2nd Edition. Feb 2003,

 M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997 4. N.Weste, K. Eshraghian, "Principles of CMOS VLSI Design". Addision Wesley, 2nd Edition, 1993

COs		-					POs			PSOs					
003	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3		3					1			1	3	2	2
CO2	3	3		3								1	3	2	2
CO3	. 2	3		2					1.1			1	3	2	2
C04	3	2		3	+1	-		10				1	3	2	2
C05	3	3		3	-							2	3	2	2
*** St.	3	High		-		2	Media	m				1	Low		

Formative as	sessment		1.1.1	
Bloom's Level	Assessment Component	Marks	Total marks	
Remember	Classrcom / Online Quiz/Group discussion	5		
Understand	Class Presentation/Power point presentation	5	15	
	Attendance	5		

Summative Assessment						
	Continuous Assessment Tests			Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination		
Remember	10	10	10	20		
Understand	10	10	10	20		
Apply	30 -	30	30	60		
Analyse	0	0	. 0	0		
Evaluate	0	0	0	0		
Create	0	0	0	0		

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

M.E. Applied Electronics (R2020)

20PEA007	NANOELECTRONICS		L	T	Ρ	С
Martin and	MANDELEOTROMOD	- A	3 0		0	3
Nature of Course	Elective core		-	-	-	
Pre requisites	Electronic circuits			100		

Course objectives

1. To understand how transistor as Nano device

- To understand various forms of Nano Devices
- To understand the Nano Sensors
- 4. To understand the concept of Gas sensor
- 5. To understand the future potential of biosensor

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Sketch and design the nano device	Apply
CO2	Summarize the design of nano sensors	Understand
CO3	Analyze the thermal sensors	Analyze
CO4	Discuss the Gas Sensor Material	Understand
CO5	Determine the potential biosensors	Understand

Course Contents:

UNIT I SEMICONDUCTOR NANO DEVICES

Single-Electron Devices; Nano scale MOSFET - Resonant Tunneling Transistor - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Mechanical Molecular Nanodevices; Nanocomputers: Optical Fibers for Nanodevices; Photochemical Molecular Devices; DNA-Based Nanodevices; Gas-Based Nanodevices.

UNIT II ELECTRONIC AND PHOTONIC MOLECULAR MATERIALS

Preparation - Electroluminescent Organic materials - Laser Diodes - Quantum well lasers -Quantum cascade lasers- Cascade surface-emitting photonic crystal laser- Quantum dot lasers -Quantum wire lasers:- White LEDs - LEDs based on nanowires - LEDs based on nanotubes - LEDs based on nanorods - High Efficiency Materials for OLEDs- High Efficiency Materials for OLEDs Quantum well infrared photo detectors.

UNIT III THERMAL SENSORS

Thermal energy sensors -temperature sensors, heat sensors - Electromagnetic sensors - electrical resistance sensors, electrical current sensors, electrical voltage sensors, electrical power sensors. magnetism sensors - Mechanical sensors - pressure sensors, gas and liquid flow sensors, position sensors - Chemical sensors - Optical and radiation sensors.

UNIT IV GAS SENSOR MATERIALS

Criteria for the choice of materials - Experimental aspects - materials, properties, measurement of gas sensing property, sensitivity; Discussion of sensors for various gases, Gas sensors based on semiconductor devices.

UNIT V BIOSENSORS

Principles - DNA based biosensors - Protein based biosensors - materials for biosensor applications - fabrication of biosensors - future potential.

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10 2020 Approved in Academic Council Meeting on 06.11.2020

SHAIRMAN - BOARD OF STUDIES

- K.E. Drexler, "Nano systems", Wiley, 1992.
 M.C. Petty, "Introduction to Molecular Electronics", 1995.
 W. Ranier, "Nano Electronics and Information Technology", Wiley, 2003.

		POs										PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	3		3								1	3	2	2
C02	3	3	-	3		10			-		1	1	3	2	2
C03	2	3		2			-	1.14	-		-	1	3	2	2
CO4	3	2		3								1	3	2	2
C05	3	3		3				14				2	3	2	. 2
	3	High	-	0		2	Medi	um	-	-		1	Low	1	

Formative as	sessment		Total
Bloom's Level	Assessment Component	Marks	marks
Remember	Classroom / Online Quiz/Group discussion	5	
Understand	Class Presentation/Power point presentation	5	15
Gilderotand	Attendance	5	1.1

* · · · · · · · · · · · · · · · · · · ·		tive Assessment		1.1
	Cor	Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

20PEA008	WIRELESS ADHOC AND SENSOR NETWORKS	L	т	P	c
Nature of Course		3	0	0	3
Nature of Course	Elective core	-		-	
Pre requisites	Wireless Networks	1.1.1	-	-	-

Course Objectives:

- To understand the basics of Ad-hoc & Sensor Networks.
 To learn various fundamental and emerging protocols of all layers.
- 3. To study about the issues pertaining to major obstacles in establishment and efficient management of Ad-hoc and sensor networks.
- To understand the nature and applications of Ad-hoc and sensor networks.

5. To understand various security practices and protocols of Ad-hoc and Sensor Networks. Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Identify different issues in wireless ad hoc and sensor networks	Analyze
CO2	Analyze protocols developed for ad hoc and sensor networks.	Analyze
соз	Modify the address in the security threats in ad hoc and sensor networks.	Apply
CO4	Manipulate a Sensor network environment for different type of applications	Apply
CO5	Understand various security practices and protocols of Ad-hoc and Sensor Networks.	Understand

Course Contents:

UNIT I MAC & TCP IN AD HOC NETWORKS

Fundamentals of WLANs - IEEE 802.11 Architecture - Self configuration and Auto configuration-Issues in Ad-Hoc Wireless Networks - MAC Protocols for Ad-Hoc Wireless Networks - Contention Based Protocols - TCP over Ad-Hoc networks-TCP protocol overview - TCP and MANETs Solutions for TCP over Ad-Hoc Networks.

UNIT II ROUTING IN AD HOC NETWORKS

Routing in Ad-Hoc Networks- Introduction-Topology based versus Position based Approaches-Proactive, Reactive, Hybrid Routing Approach-Principles and issues - Location services - DREAM -Quorums based location service - Grid - Forwarding strategies - Greedy packet forwarding Restricted directional flooding- Hierarchical Routing- Issues and Challenges in providing QoS.

UNIT III MAC, ROUTING & QOS IN WIRELESS SENSOR NETWORKS

Introduction - Architecture - Single node architecture - Sensor network design considerations -Energy Efficient Design principles for WSNs - Protocols for WSN - Physical Layer : Transceiver Design considerations - MAC Layer Protocols - IEEE 802.15.4 Zigbee - Link Layer and Error Control issues - Routing Protocols - Mobile Nodes and Mobile Robots - Data Centric & Contention Based Networking - Transport Protocols & QOS - Congestion Control issues - Application Layer support.

UNIT IV SENSOR MANAGEMENT

Sensor Management - Topology Control Protocols and Sensing Mode Selection Protocols - Time synchronization - Localization and positioning - Operating systems and Sensor Network programming - Sensor Network Simulators.

UNIT V SECURITY IN AD HOC AND SENSOR NETWORKS

Security in Ad-Hoc and Sensor networks - Key Distribution and Management - Software based Anti-tamper techniques - water marking techniques - Defense against routing attacks - Secure Adhoc routing protocols - Broadcast authentication WSN protocols - TESLA - Biba - Sensor Network Security Protocols - SPINS.

TOTAL : 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

 Adrian Perrig, J. D. Tygar, "Secure Broadcast Communication: In Wired and Wireless Networks", Springer, 2006.

 Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc and Sensor Networks: Theory and Applications (2nd Edition), World Scientific Publishing, 2011

 C.Siva Ram Murthy and B.S.Manoj, "Ad Hoc Wireless Networks – Architectures and Protocols", Pearson Education, 2004.

4. C.K.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2002.

Erdal Çayırcı, Chunming Rong, "Security in Wireless Ad Hoc and Sensor Networks", John Wiley and Sons, 2009.

 Holger Karl, Andreas willig, Protocols and Architectures for Wireless Sensor Networks, John Wiley & Sons, Inc. 2005.

 Subir Kumar Sarkar, T G Basavaraju, C Puttamadappa, "Ad Hoc Mobile Wireless Networks", Auerbach Publications, 2008.

 Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks Theory and Practice", John Wiley and Sons, 2010.

Mapping of Course Outcomes	(COs) with Program	Outcomes (POs)	Program Specific
Outcomes (PSOs)	And the second second second		Same and the second second

outcomes	1.00	101								_	-				
COs							POs						1 S.	PSOs	1.1
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	З		3	-55		10			1		1	3	2	2
CO2	3	3		3								1	3	2	2
CO3	2	3		2				-				1	3	2	2
CO4	3	2		3	1							1	3	2	2
C05	3	3		3	5							2	3	2	2
	3	High	8			2	Medi	um				1	Low		

Bloom's Level	Assessment Component.	Marks	Total
Remember	Classroom / Online Quiz/Group discussion	5	-
Understand	Class Presentation/Power point presentation	5 .	15
	Attendance	5	1 2

	Summa	ative Assessment		
	Cor	ntinuous Assessm	ent Tests	Terminal
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0 •

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

M.E. Applied Electronics (R2020)

20PEA009	HIGH PERFORMANCE NETWORKS	L	т	Р	с
Nature of Course		3	0	0	3
Nature of Course	Elective core	1-	-	-	1.0
Pre requisites	Microwave		-	-	-

Course Objectives:

1. To develop a comprehensive understanding of multimedia networking.

2. To study the types of VPN and tunneling protocols for security.

3. To learn about network security in many layers and network management.

To understand the traffic modeling concept

To Evaluate the network security.

Course Outcomes

On successful completion of the course, students will be able to

. Course Outcome	Bloom's Level
Discuss advanced networks concepts	Understand
Understand the networking Applications	Understand
Examine the advanced topics	Analyze
Outline traffic modeling	Remember
Evaluate network security	Evaluate
	Discuss advanced networks concepts Understand the networking Applications Examine the advanced topics Outline traffic modeling

Course Contents:

UNIT I INTRODUCTION

Review of OSI, TCP/IP; Multiplexing, Modes of Communication, Switching, Routing, SONET -DWDM - DSL - ISDN - BISDN, ATM.

UNIT II MULTIMEDIA NETWORKING APPLICATIONS

Streaming stored Audio and Video - Best effort service - protocols for real time interactive applications - Beyond best effort - scheduling and policing mechanism - integrated services -RSVP- differentiated services.

UNIT III ADVANCED NETWORKS CONCEPTS

VPN-Remote-Access VPN, site-to-site VPN, Tunneling to PPP, Security in VPN.MPLS- operation, Routing, Tunneling and use of FEC, Traffic Engineering, MPLS based VPN, overlay networksP2P connections.

UNIT IV TRAFFIC MODELLING

Little's theorem, Need for modeling, Poisson modeling and its failure, Non- poisson models, Network performance evaluation.

UNIT V NETWORK SECURITY AND MANAGEMENT

Principles of cryptography - Authentication - integrity - key distribution and certification - Access control and: fire walls - attacks and counter measures - security in many layers. Infrastructure for network management - The internet standard management framework - SMI, MIB, SNMP, Security and administration - ASN 1

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020 Approved in Academic Council Meeting on 06.11.2020

 Aunurag Kumar, D. M Anjunath, Joy Kuri, "Communication Networking", Morgan Kaufmann Publishers, 1 st edition 2004.

Fred Halsall and Lingana Gouda Kulkarni, "Computer Networking and the Internet", fifth edition, Pearson education 2006

 Hersent Gurle & Petit, "IP Telephony, packet Pored Multimedia communication Systems", Pearson education 2003

 J.F. Kurose & K.W. Ross, "Computer Networking- A top down approach featuring the internet", Pearson, 2 nd edition, 2003

5. Larry I.Peterson & Bruce S.David, "Computer Networks: A System Approach"- 1995

6. LEOM-GarCIA, WIDJAJA, "Communication networks", TMH seventh reprint 2002.

7. Nader F.Mir ,Computer and Communication Networks, first edition 2010

 Walrand J. Varatya, High performance communication network, Morgan Kauffman – Harcourt Asia Pvt, Ltd. 2 nd Edition, 2000

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

							POs	8			PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3		3		1.24	100					1	3	2	2
C02	3	3		3				1				1	3	2	2
. CO3	2	3		2								1	3	2	2
CO4	3	2		3	3			-	0			1	3	2	2
CO5	3	3		3		1						2	3	2	2
	3	High				2	Med	um				1	Low		

Formative as	sessment		Total
Bloom's Level	Assessment Component	Marks	marks
Remember	Classroom / Online Quiz/Group discussion	5	2.65
Understand	Class Presentation/Power point presentation	5	15
STREET STREET	Attendance	5	

		ative Assessment	and the second second	
	Cor	ntinuous Assessm	ent Tests	Terminal
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

M.E. Applied Electronics (R2020)

20PEA010	DSP Processor Architecture and Programming	L	т	P	С	
	bor Processor Atomeeture and Programming	3	0	0	3	
Nature of Course	Elective core	0.00		-	20	
Pre requisites	Digital Signal Processing					

Course objectives:

1. To study the basics of Digital Signal Processor

2. To learn the programming skills

3. To Learn the DSP Architecture

4. To find the Advanced DSP architectures

To identify the architectures and some applications

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
C01	Become Digital Signal Processor specialized engineer	Understand
CO2	Understand by learning the programming skills	Understand
соз	Analyze the DSP based System Developer	Analyze
CO4	Analyze the Advanced DSP architectures	Analyze
C05	Identify the architectures and some applications	Evaluate

Course Contents:

UNIT I FUNDAMENTALS OF PROGRAMMABLE DSPs

Multiplier and Multiplier accumulator - Modified Bus Structures and Memory access in PDSPs -Multiple access memory - Multi-port memory - VLIW architecture- Pipelining - Special Addressing . modes in P-DSPs - On chip Peripherals.

UNIT II TMS320C5X PROCESSOR

Architecture - Assembly language syntax - Addressing modes - Assembly language Instructions -Pipeline structure, Operation - Block Diagram of DSP starter kit - Application Programs for processing real time signals.

UNIT III TMS320C6X PROCESSOR

Architecture of the C6x Processor - Instruction Set - DSP Development System: Introduction - DSP Starter Kit Support Tools- Code Composer Studio - Support Files - Programming Examples to Test the DSK Tools - Application Programs for processing real time signals.

UNIT IV ADSP PROCESSORS

Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions - Application programs -Filter design, FFT calculation.

UNIT V ADVANCED PROCESSORS

Architecture of TMS320C54X: Pipe line operation, Code Composer studio - Architecture of TMS320C6X - Architecture of Motorola DSP563XX - Comparison of the features of DSP family processors.

TOTAL : 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020 Approved in Academic Council Meeting on 06.11.2020

1. Avtar Singh and S. Srinivasan, Digital Signal Processing - Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012

 B.Venkataramani and M.Bhaskar, "Digital Signal Processors - Architecture, Programming and Applications" - Tata McGraw - Hill Publishing Company Limited. New Delhi, 2003.

 RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, A JOHN WILEY & SONS, INC., PUBLICATION, 2005

4. User guides Texas Instrumentation, Analog Devices, Motorola.

	1	POs												PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	3		3								1	3	2	2		
CO2	. 3	3		3								1	3	2	2		
CO3	2	3		2								1	3	2	2		
CO4	3	2		3	-							1	3	2	2		
CO5	3	3		3	-					-		2	3	2	4		
1.15	3	High	-	-	-	2	Medi	um				1	Low	0.1			

Formative as	sessment		Total	
Bloom's Level	Assessment Component	Marks	marks	
Remember	Classroom / Online Quiz/Group discussion	5	1.00	
Understand	Class Presentation/Power point presentation	- 5	15	
Onderstario	Attendance	5		

1	Summa Cor	tive Assessment tinuous Assessme	ent Tests	Terminal
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
The second se	10	10	10	20
Understand		30	30	60
Apply	30		0	0
Analyse	0	0	U	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

20PEA011 RF SYSTEM DESIGN					
	+	3	0	0	3
Nature of Course Elective core					1
		_	1	_	-
Pre requisites RF and Antenna design Course Objectives: 1. To understand the CMOS RF Front End (RFE) is a very	crucial building) block a	and	in	a

- Amplifiers, Phase Locked Loop Synthesizers, Mixers, Power Amplifiers, and impedance matching circuits.
- 3. To introduce the principles of operation and design principles associated with these important blocks.
- 4. To provide and highlight the appropriate digital communication related design objectives and constraints associated with the RFEs
- To understand the concept of frequency synthesizers.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Understand the CMOS RF Front End (RFE)	Understand
a store in the store of	Analyze the transistor level design of the entire RFE.	Analyze
	Able to translate the top level wireless communications system	Analyze
	Design objectives and constraints associated with the RFEs	Create
	Understand the concept of frequency synthesizers	Understand

Course Contents:

UNIT I CMOS PHYSICS, TRANSCEIVER SPECIFICATIONS AND ARCHITECTURES Introduction to MOSFET Physics, Noise: Thermal, shot, flicker, popcorn noise, Two port Noise theory, Noise Figure, THD, IP2, IP3, Sensitivity, SFDR, Phase noise - Specification distribution over a communication link, Homodyne Receiver, Heterodyne Receiver, Image reject, Low IF Receiver Architectures Direct up conversion Transmitter, Two step up conversion Transmitter.

UNIT II IMPEDANCE MATCHING AND AMPLIFIERS

S-parameters with Smith chart, Passive IC components, Impedance matching networks, Common Gate, Common Source Amplifiers, OC Time constants in bandwidth estimation and enhancement, High frequency amplifier design, Power match and Noise match. Single ended and Differential LNAs, Terminated with Resistors and Source Degeneration LNAs.

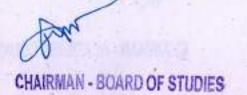
UNIT III FEEDBACK SYSTEMS AND POWER AMPLIFIERS

Stability of feedback systems: Gain and phase margin, Root-locus techniques, Time and Frequency domain considerations, Compensation, General model - Class A, AB, B, C, D, E and F amplifiers, Power amplifier Linearisation Techniques, Efficiency boosting techniques, ACPR metric, Design considerations.

UNIT IV MIXERS AND OSCILLATORS

Mixer characteristics, Non-linear based mixers, Quadratic mixers, Multiplier based mixers, Single balanced and double balanced mixers, subsampling mixers, Oscillators describing Functions, Colpitts oscillators Resonators, Tuned Oscillators, Negative resistance oscillators, Phase noise.

UNIT V PLL AND FREQUENCY SYNTHESIZERS


Linearised Model, Noise properties, Phase detectors, Loop filters and Charge pumps, Integer-N frequency synthesizers, Direct Digital Frequency synthesizers. TOTAL: 45 PERIODS

REFERENCES:

1. B.Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2001

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

2. B.Razavi, "RF Microelectronics", Pearson Education, 1997.

3. Jan Crols, Michiel Steyaert, "CMOS Wireless Transceiver Design", Kluwer Academic Publishers, 1997.

4. Recorded lectures and notes available at . http://www.ee.iitm.ac.in/~ani/ee6240/

5. T.Lee, "Design of CMOS RF Integrated Circuits", Cambridge, 2004.

00-				PSOs											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3		3								1	3	2	2
CO2	3	3		3		1		1		1		1	3	2	2
CO3	2	3		2								1	3	2	2
CO4	3	2		3						8		1	3	2	2
CO5	3	3		3				-	-			2	3	2	. 2
0.2.545.	3	High				2	Medi	um.				1	Low		

Formative as	sessment		1.1.1
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom / Online Quiz/Group discussion	5	91
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	

10 M	and the second sec	ative Assessment	and Tanks	
-	1	ntinuous Assessm 2	ant rests	Terminal
Bloom's Category	(7.5)	(7.5)	(10)	Examination (60)
Reimember	10	10	10	20
Understand	10	10	10	20
Apply	30	-30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020 Approved in Academic Council Meeting on 06.11.2020

20PEA012 SPEECH AND AUDIO SIGNAL PROCESSING	L	т	P	C		
	SPEECH AND AUDIO SIGNAL PROCESSING	L 3	0	0	3	

Nature of Course	Elective core
Pre requisites	Audio Engineering

Course Objectives:

1. To study basic concepts of processing speech and audio signals

2. To study and analyse various M-band filter-banks for audio coding

3. To understand audio coding based on transform coders.

To study time and frequency domain speech processing method.

To understand the speech processing concept

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Compute the basic concepts of processing speech and audio signals	Apply
. CO2	Analyze various M-band filter-banks for audio coding	Analyze
CO3	Understand audio coding based on transform coders.	Understand
CO4	Compare the time and frequency domain speech processing method	Analyze
CO5	Understand the speech processing concept	Understand
and the second se		

Course Contents:

UNIT I MECHANICS OF SPEECH AND AUDIO

Introduction - Review of Signal Processing Theory-Speech production mechanism - Nature of Speech signal - Discrete time modelling of Speech production - Classification of Speech sounds - Phones - Phonemes - Phonetic and Phonemic alphabets - Articulatory features. Absolute Threshold of Hearing - Critical Bands- Simultaneous Masking, Masking-Asymmetry, and the Spread of Masking. Nonsimultaneous Masking - Perceptual Entropy - Basic measuring philosophy - Subjective versus objective perceptual testing - The perceptual audio quality measure (PAQM) - Cognitive effects in judging audio quality.

UNIT II TIME-FREQUENCY ANALYSIS: FILTER BANKS AND TRANSFORMS

Introduction - Analysis-Synthesis Framework for M-band Filter Banks- Filter Banks for Audio Coding: Design Considerations - Quadrature Mirror and Conjugate Quadrature Filters - Tree-Structured QMF and CQF M-band Banks - Cosine Modulated "Pseudo QMF" M-band Banks - Cosine Modulated Perfect Reconstruction (PR) M-band Banks and the Modified Discrete Cosine Transform (MDCT) - Discrete Fourier and Discrete Cosine Transform - Pre-echo Distortion- Preecho Control Strategies

UNIT III AUDIO CODING AND TRANSFORM CODERS

Lossless Audio Coding – Lossy Audio Coding - ISO-MPEG-1A, 2A, 2A-Advaned, 4A Audio Coding -Optimum Coding in the Frequency Domain - Perceptual Transform Coder – Brandenburg - Johnston Hybrid Coder - CNET Coders - Adaptive Spectral Entropy Coding –Differential Perceptual Audio Coder - DFT Noise Substitution -DCT with Vector Quantization -MDCT with Vector Quantization

UNIT IV TIME AND FREQUENCY DOMAIN METHODS FOR SPEECH PROCESSING

Time domain parameters of Speech signal – Methods for extracting the parameters :Energy, Average Magnitude – Zero crossing Rate – Silence Discrimination using ZCR and energy Short. Time Fourier analysis – Formant extraction – Pitch Extraction using time and frequency domain methods Homomorphic Speech Analysis: Cepstral analysis of Speech – Formant and Pitch Estimation – Homomorphic Vocoders

Passed in Board of studies Meeting on 28.10.2020 Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

CHAIRMAN - ACADEMIC COUNCIL

9

UNIT V PREDICTIVE ANALYSIS OF SPEECH

Formulation of Linear Prediction problem in Time Domain – Basic Principle – Auto correlation method – Covariance method – Solution of LPC equations – Cholesky method – Durbin's Recursive algorithm – lattice formation and solutions – Comparison of different methods – Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP

TOTAL: 45 PERIODS

REFERENCES:

1. B.Gold and N.Morgan, "Speech and Audio Signal Processing", Wiley and Sons, 2000.

 L.R.Rabiner and R.W.Schaffer, "Digital Processing of Speech Signals", Prentice Hall, 1978.
 Mark Kahrs, Karlheinz Brandenburg, Kluwer Applications of Digital Signal Processing to Audio And Acoustics, Academic Publishers,

4. Udo Zölzer, "Digital Audio Signal Processing", Second Edition A John Wiley& sons Ltd

Mapping of Course Outcomes (C	s) with Program Outcomes (POs) Program Specific
Outcomes (PSOs)	

C02							POs	8		1		-4	1.	PSOs	
ÇOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3		3	-							1	3	2	2
CO2	3	3		3			at 1	10				1	3	2	2
CO3	2	3		2	1			1				1	3	2	2
CO4	3	2		3	1			1		1.1		1	3	2.	2
CO5	3	3		3								2	3	2	2
	3	High				2	Medi	um	S	11- 1		1	Low	1	

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom / Online Quiz/Group discussion	5	
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	

31 J - 8	Summa	ative Assessment		
	Cor	ntinuous Assessm	ent Tests	Terminal
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - ACADEMIC COUNCIL

9

M.E. Applied Electronics (R2020)

	INTERNET of THINGS	3	0	0	3
20PEA013	NETRONET / TUNIOD	L	T	P	C

Nature of Course	Elective core	
Pre requisites	Electronic circuits	
Course Objectives:		

- 1. To understand the fundamentals of Internet of Things
- 2. To learn about the basics of IOT protocols
- To build a small low cost embedded system using Raspberry Pi.
- To apply the concept of Internet of Things in real world
- 5. To understand the IoT in real world scenario

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
C01	Analyze various protocols for IoT	Analyze
CO2	Develop web services to access/control IoT devices	Create
C03	Design a portable IoT using Rasperry Pi	Create
C04	Deploy an IoT application and connect to the cloud.	Apply
CO5	Analyze applications of IoT in real time scenario	Analyze

Course Contents:

UNIT I INTRODUCTION TO IoT

Internet of Things - Physical Design- Logical Design- IoT Enabling Technologies - IoT Levels & Deployment Templates - Domain Specific IoTs - IoT and M2M - IoT System Management with NETCONF-YANG- IoT Platforms Design Methodology

UNIT II IoT ARCHITECTURE

M2M high-level ETSI architecture - IETF architecture for IoT - OGC architecture - IoT reference model - Domain model - information model - functional model - communication model - IoT reference architecture

UNIT III IoT PROTOCOLS

Protocol Standardization for IoT – Efforts – M2M and WSN Protocols – SCADA and RFID Protocols – Unified Data Standards – Protocols – IEEE 802.15.4 – BACNet Protocol – Modbus– Zigbee Architecture – Network layer – 6LowPAN - CoAP – Security

UNIT IV BUILDING IOT WITH RASPBERRY PI & ARDUINO

Building IOT with RASPERRY PI- IoT Systems - Logical Design using Python – IoT Physical Devices & Endpoints - IoT Device -Building blocks -Raspberry Pi -Board - Linux on Raspberry Pi - Raspberry Pi Interfaces -Programming Raspberry Pi with Python - Other IoT Platforms - Arduino.

UNIT V CASE STUDIES AND REAL-WORLD APPLICATIONS

Real world design constraints - Applications - Asset management, Industrial automation, smart grid, Commercial building automation, Smart cities - participatory sensing - Data Analytics for IoT – Software & Management Tools for IoT Cloud Storage Models & Communication APIs - Cloud for IoT - Amazon Web Services for IoT.

TOTAL :45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020 .

M.E. Applied Electronics (R2020)

20PEA014 .	SOLID STATE DEVICE MODELLING AND SIMULATION	L	т	Ρ	С
		3	0	0	3
Nature of Course	Elective core		-		
Pre requisites	VLSI Design				

Course Objectives:

- 1. To understand the concept of device modeling
- 2. To learn multistep method
- To study device simulations
 To study the concept
- 5. To understand

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
C01	Explain the importance of MOS Capacitor and Small signal modeling	Remember
CO2	Apply and determine the drift diffusion equation and stiff system equation	Apply
C03	Analyze circuits using parasitic BJT parameters and newton Raphson method	Analyze
C04	Model the MOS transistor using schrodinger equation	Apply
CO5	Evaluate the Multistep methods.	Evaluate

Course Contents:

UNIT I MOSFET DEVICE PHYSICS MOSFET

capacitor, Basic operation, Basic modeling, Advanced MOSFET modeling, RF modeling of MOS transistors, Equivalent circuit representation of MOS transistor, High frequency behavior of MOS transistor and A.C small signal modeling, model parameter extraction, modeling parasitic BJT, Resistors, Capacitors, Inductors.

UNIT II DEVICE MODELLING

Prime importance of circuit and device simulations in VLSI; Nodal, mesh, modified nodal and hybrid analysis equations. Solution of network equations: Sparse matrix techniques, solution of nonlinear networks through Newton-Raphson technique, convergence and stability.

UNIT III MULTISTEP METHODS

Solution of stiff systems of equations, adaptation of multistep methods to the solution of electrical networks, general purpose circuit simulators.

UNIT IV MATHEMATICAL TECHNIQUES DEVICE SIMULATIONS

Poisson equation, continuity equation, drift-diffusion equation, Schrodinger equation, hydrodynamic equations, trap rate, finite difference solutions to these equations in 1D and 2D space, grid generation.

UNIT V SIMULATION OF DEVICES

Computation of characteristics of simple devices like p-n junction, MOS capacitor and MOSFET; Small-signal analysis.

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

SHAIRMAN - ACADEMIC COUNCIL

TOTAL :45 PERIODS

9

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things - A hands-on approach", Universities Press, 2015

 Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.

 Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.
 Jan Ho" Iler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.

5. Olivier Hersent, David Boswarthick, Omar Elloumi , "The Internet of Things - Key applications and Protocols", Wiley, 2012

							POs		_	-	-		PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3		3								1	3	2	2	
CO2	3	3		3			5	2				1	3	2	2	
CO3	2	3		2								1	3	2	2	
CO4	3	2		3				1	1			1	3	2	2	
CO5	3	3		3								2	3	2	2	
CO5	1 inited	3 High		3		2	Medi	um	-		_	2	3 Low	2		

Formative as	Sessilien		Total
Bloom's Level	Assessment Component	Marks	marks
Remember	Classroom / Online Quiz/Group discussion	5	1
Understand	Class Presentation/Power point presentation	5	15
Grider Browner	Attendance	5	

10 A		tive Assessment		1		
	Cor	ntinuous Assessme	ent Tests	Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)		
Remember	10	10	10	20		
Understand	10	10	10	20		
Apply	30	30	30	60		
Analyse	0	0	0	0		
Evaluate	0	0	0	0		
Create	0	0	0	0		

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

1. Arora, N., "MOSFET Modeling for VLSI Simulation", Cadence Design Systems, 2007 Chua, L.O. and Lin, P.M., "Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques", Prentice-Hall., 1975

3. Fjeldly, T., Yetterdal, T. and Shur, M., "Introduction to Device Modeling and Circuit Simulation", Wiley-Interscience., 1997

4. Grasser, T., "Advanced Device Modeling and Simulation", World Scientific Publishing Company., 2003

 Selberherr, S., "Analysis and Simulation of Semiconductor Devices", Springer- Verlag., 1984
 Trond Ytterdal, Yuhua Cheng and Tor A. FjeldlyWayne Wolf, "Device Modeling for Analog and RF CMOS Circuit Design", John Wiley & Sons Ltd.

outcomes	1	11					POs						PSOs			
COs	1	2	3	• 4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3		3								1	3	2	2	
CO2	3	3		3								1	3	2	2	
CO3	2	3		2								1	3	2	2	
.CO4	3	2		3								1	3	2	2	
CO5	3	3		3		-		-	1	20		2	3	2	2	
	3	High	10 - 27		-	2	Medi	um				1	Low			

Formative as	ooomene		Total	
Bloom's Level	Assessment Component	Marks	marks	
Remember	Classroom / Online Quiz/Group discussion	5	1	
Understand	Class Presentation/Power point presentation	5	15	
Childerstand	Attendance	5	1.5	

		tive Assessment	ant Tests		
	Cor	tinuous Assessm	entrests	Terminal	
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)	
Remember	10	10	10	20	
Understand	10	10	10	20	
Apply	30	30	30	60	
Analyse	0	0	0	0	
Evaluate	0	0	0	0	
Create	. 0	0	0	0	

Passed in Board of studies Meeting on 28.10.2020

CHAIRMAN - BOARD OF STUDIES

Approved in Academic Council Meeting on 06.11.2020

Alternational and the second states and the second states

M.E. Applied Electronics (R2020)

SYSTEM ON CHIP DESIGN	L	T	Ρ	C
	3	0	0	3
Elective core		-	-	-
Embedded systems		_	-	_
		SYSTEM ON CHIP DESIGN 3 Elective core	SYSTEM ON CHIP DESIGN 3 0 Elective core	Elective core

Course Objectives:

To Analyse algorithms and architecture of hardware software

2. To Model and specify systems at high level of abstraction

3. To appreciate the co-design approach and virtual platform models

4. To Understand hardware, software and interface synthesis

5. To evaluate the system based on requirements and implementation constraints

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Analyse algorithms and architecture of hardware software	Analyze
CO2	Model and specify systems at high level of abstraction	Apply
СОЗ	Appreciate the co-design approach and virtual platform models	Analyze
CO4	Understand hardware, software and interface synthesis	Understand
CO5	Evaluate the system based on requirements and implementation constraints	Evaluate

Course Contents:

UNIT I INTRODUCTION

Introduction to SoC Design, system level design, methodologies and tools, system hardware: IO, communication, processing units, memories; operating systems: prediction of execution, real time scheduling, embedded OS, middle ware; Platform based SoC design, multiprocessor SoC and Network on Chip, Low power SoC Design

UNIT II SYSTEM LEVEL MODELLING

SystemC: overview, Data types, modules, notion of time, dynamic process, basic channels, structure communication, ports and interfaces, Design with examples

UNIT III HARDWARE SOFTWARE CO-DESIGN

Analysis, partitioning, high level optimisations, real-time scheduling, hardware acceleration, voltage scaling and power management; Virtual platform models, co-simulation and FPGAs for prototyping of HW/SW systems.

UNIT IV SYNTHESIS

System synthesis: Transaction Level Modelling (TLM) based design, automaticTLM generation and mapping, platform synthesis; software synthesis: code generation, multi task synthesis, internal and external communication; Hardware synthesis: RTL architecture, Input models, estimation and optimisation, resource sharing and pipelining and scheduling

UNIT V SOC VERIFICATION AND TESTING

SoC and IP integration, Verification : Verification technology options, verification methodology, overview: system level verification, physical verification, hardware/software co-verification; Test requirements and methodologies, SoC design for testability - System modeling, test power dissipation, test access mechanism

TOTAL : 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

CHAIRMAN - ACADEMIC COUNCIL

9

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things - A hands-on approach", Universities Press, 2015

2. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.

 Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.
 Jan Ho⁻ Iler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.

5. Olivier Hersent, David Boswarthick, Omar Elloumi , "The Internet of Things - Key applications and Protocols", Wiley, 2012 .

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

COs	+						POs	ð., .					PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	2	3		. 3								1	3	2	2	
CO2	3	3		3					-			1	3	2	. 2	
C03	2	3		2								1	3	2	2	
CO4	3	2		3			1	(Sal)		-		1	3	2	2	
C05	3	3		3	1			1				2	3	2	2	
	3	High				2	Media	um		100		1	Low			

Bloom's Level	Assessment Component	Marks	Total marks		
Remember	Classroom / Online Quiz/Group discussion	5			
Understand	Class Presentation/Power point presentation	5	15		
	Attendance .	5	1000		

	Summa	ative Assessment		
1	Cor	Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

20PEA016	ROBOTICS	L	T	Ρ	С
and the second		3	0	0	3
Nature of Course	Elective core		-	11.1	1.
Pre requisites	Embedded systems		_	-	_

Course Objectives:

1. To understand robot locomotion and mobile robot kinematics

- 2. To understand perception in robotics
- 3. To understand mobile robot localization
- To understand mobile robot mapping
- To understand simultaneous localization and mapping (SLAM)

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Explain robot locomotion	Remember
CO2	Apply kinematics models and constraints	Apply
CO3	Implement vision algorithms for robotics	Apply
CO4	Implement SLAM algorithms	Apply
CO5	Understand the planning and navigation	Understand

Course Contents:

UNIT I LOCOMOTION AND KINEMATICS

Introduction to Robotics - key issues in robot locomotion - legged robots - wheeled mobile robots aerial mobile robots - introduction to kinematics - kinematics models and constraints - robot maneuverability

UNIT II ROBOT PERCEPTION

Sensors for mobile robots - vision for robotics - cameras - image formation - structure from stereo structure from motion - optical flow - color tracking - place recognition - range data

UNIT III MOBILE ROBOT LOCALIZATION

Introduction to localization - challenges in localization - localization and navigation - belief representation - map representation - probabilistic map-based localization - Markov localization -EKF localization - UKF localization - Grid localization - Monte Carlo localization - localization in dynamic environments

UNIT IV MOBILE ROBOT MAPPING

Autonomous map building.- occupancy grip mapping - MAP occupancy mapping - SLAM extended Kalman Filter SLAM - graph-based SLAM - particle filter SLAM - sparse extended information filter - fastSLAM algorithm.

UNIT V PLANNING AND NAVIGATION

Introduction to planning and navigation - planning and reacting - path planning - obstacle avoidance techniques - navigation architectures - basic exploration algorithms

TOTAL 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Councy Meeting on 06.11.2020

1. Gregory DudekandMichael Jenkin, "Computational Principles of Mobile Robotics", Second Edition, Cambridge University Press, 2010.

2. Howie Choset et al., "Principles of Robot Motion: Theory, Algorithms, and Implementations", A Bradford Book, 2005.

 Maja J. Mataric, "The Robotics Primer", MIT Press, 2007.
 Roland Seigwart, Illah Reza Nourbakhsh, and Davide Scaramuzza, "Introduction to autonomous" mobile robots", Second Edition, MIT Press, 2011.

5. Sebastian Thrun, Wolfram Burgard, and Dieter Fox, "Probabilistic Robotics", MIT Press, 2005.

	1	POs											PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3		3	14		-			1		1	3	2	2
CO2	3	3		3								1	3	2	2
CO3	2	3		2			-	1				1	3	2	2
CO4	3	2		3	1			-				1	3	2	2
CO5	3	3		3								2	3	2	2
CONTRACTOR.	3	High		1	-	2	Medi	um				1	Low		

Formative as	sessment		Total
Bloom's - Level	Assessment Component	Marks	marks
Remember	Classroom / Online Quiz/Group discussion	5	1. 1. 1.
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	1000

		tive Assessment		
	Cor	ntinuous Assessm	ent Tests	Terminal
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

20PEA017	÷-	PHYSICAL DESIGN OF VLSI CIRCUITS		L	T	Ρ	C
				3	0	0	3
Nature of C	Course	Elective core	2.00	135 0			
Pre requisi	tes	Embedded systems					

Course Objectives:

- To introduce the physical design concepts such as routing, placement, partitioning and packaging
- 2. To study the performance of circuits layout designs, compaction techniques.
- To study the outline 1D compaction- 2D compaction.
- 4. To Understand the performance issues in circuit Layout.
- To Understand the concept of routing

Course Outcomes

On successful completion of the course, students will be able to

Course Outcome	Bloom's Level
Explain different types of routing	Remember
Discuss performance issues in circuit layout	Apply
Outline 1D compaction- 2D compaction.	Apply
Understand the performance issues in circuit Layout	Understand
Understand the concept of routing	Understand
	Explain different types of routing Discuss performance issues in circuit layout Outline 1D compaction- 2D compaction. Understand the performance issues in circuit Layout

Course Contents:

UNIT I INTRODUCTION TO VLSI TECHNOLOGY

Layout Rules-Circuit abstraction Cell generation using programmable logic array transistor chaining, Wein Berger arrays and gate matrices-layout of standard cells gate arrays and sea of gates, field programmable gate array(FPGA)-layout methodologies Packaging-Computational Complexity -Algorithmic Paradigms.

UNIT II PLACEMENT USING TOP-DOWN APPROACH

Partitioning: Approximation of Hyper Graphs with Graphs, Kernighan-Lin Heuristic Ratio cut partition with capacity and i/o constrants. Floor planning: Rectangular dual floor planning hierarchical approach- simulated annealing- Floor plan sizing Placement: Cost function- force directed methodplacement by simulated annealing partitioning placement- module placement on a resistive network – regular placement linear placement.

UNIT III ROUTING USING TOP DOWN APPROACH

Fundamentals: Maze Running- line searching- Steiner trees Global Routing: Sequential Approaches - hierarchial approaches - multi commodity flow based techniques - Randomised Routing- One Step approach - Integer Linear Programming Detailed Routing: Channel Routing - Switch box routing. Routing in FPGA: Array based FPGA- Row based FPGAs

UNIT IV PERFORMANCE ISSUES IN CIRCUIT LAYOUT

Delay Models: Gate Delay Models- Models for interconnected Delay- Delay in RC trees. Timing – Driven Placement: Zero Stack Algorithm- Weight based placement- Linear Programming Approach Timing riving Routing: Delay Minimization- Click Skew Problem- Buffered Clock Trees. Minimization: constrained via Minimization unconstrained via Minimization- Other issues in minimization

UNIT V SINGLE LAYER ROUTING, CELL GENERATION AND COMPACTION

Planar subset problem(PSP)- Single Layer Global Routing- Single Layer detailed Routing- Wire length and bend minimization technique – Over The Cell (OTC) Routing Multiple chip modules(MCM)- programmable Logic Arrays- Transistor chaining- Wein Burger Arrays- Gate matrix layout- 1D compaction- 2D compaction.

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020 Approved in Academic Council Meeting on 06.11.2020

CHAIRMAN - BOARD OF STUDIES

CHAIRMAN - ACADEMIC COUNCIL

9

Preas M. Lorenzatti, "Physical Design and Automation of VLSI systems". The Benjamin Cummins Publishers, 1998.
 Sarafzadeh, C.K. Wong, "An Introduction to VLSI Physical Design", McGraw Hill Int. Edition 1995

		POs								- 20	PSOS				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3		3				1	1			1	3	2	2
CO2	3	3		3		1	185	1.5		1	1	1	3	2	2
CO3	2	3		2		1	-		1			1	3	2	2
C04	3	2		3				-				1	3	2	2
C05	3	3		3	12						1.1	2	3	2	2
U.	3	High	-		1	2	Medi	um		-		1	Low		

Formative as	sessment	-	Total
Bloom's Level	Assessment Component	Marks	marks
Remember	Classroom / Online Quiz/Group discussion	5	11.0
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	

		tive Assessment	ant Tents	-
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Terminal Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	- 0

Approved in Academic Council Meeting on 06.11.2020 Passed in Board of studies Meeting on 28.10.2020

M.E. Applied Electronics (R2020)

20SEA025	HUMAN COMPUTER INTERACTION	L	т	Ρ	C
		3	0	0	3
Nature of Course	Professional Core	1000			
Pre requisites	Fundamentals of Computer Architecture		1		

Course objectives:

- To encourage empirical research (using valid and reliable methodology, with studies of the methods themselves where necessary)
- To promote the use of knowledge and methods from the human sciences in both design and evaluation of computer systems
- To promote better understanding of the relation between formal design methods and system usability and acceptability
- To develop guidelines, models and methods by which designers may be able to provide better human-oriented computer systems

Course outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
CO1	Describe the Empirical Research	Knowledge
C02	Explain the the human sciences in both design and evaluation of computer systems	Understand
соз	Describe the relation between formal design methods and system usability and acceptability	Understand
CO4	Explain the models and methods by which designers	Understand
C05	Case Study	Understand

Course Contents:

INTRODUCTION TO HCI UNIT I

Human Computer Interaction Models - Ergonomics - Industrial Interface Design - Basics of Interaction Devices - Interaction Styles - Utility of Hypertext - Multimedia Signal Aspects - World Wide Web.

USABILITY ENGINEERING PROCESS UNIT II

Paradigms - Principles Supporting Usability - User Interface Generation - Usability Engineering Life Cycle - Different Stages - Requirements Modeling - Task Analysis and Uses - Dialog Notations - System Models - Implementation.

USABILITY HEURISTICS, TESTING AND EVALUATION UNIT III

Heuristics in Usability Engineering - Testing - Types of Evaluating and Assessing the Design -Implementation Aspects .

UNIT IV APPLICATION AREAS

Applications Involving Speech, Handwriting and Gesture Recognition - Computer Vision - Virtual Reality - Unconventional Human Computer Interfaces.

CASE STUDY UNIT V

Case Study of Dasher, Interface for Entering Text - Case Study of P300 Based Brain Computer Interface.

TOTAL: 45 PERIODS

Approved in Academic Council Meeting on 06.11.2020 Passed in Board of studies Meeting on 28.10.2020

CHAIRMAN - BOARD OF STUDIES

CHAIRMAN - ACADEMIC COUNCIL

10

1. Alan J Dix, Janet E Finlay, Greogory D Abowd, Russel Beale, "Human Computer Interface", 2nd Edition, Prentice Hall, 1998.

2. Jakob Nielsen, "Usability Engineering", Morgan Kaufmann Publishers, 1992.

3. Ben Shneiderman, "Designing the user interface: Strategies for effective human computer interaction", 4th Edition, Reading, 2004.

SOs)			_	_		is li	POs				_		PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	2	3	2	-	1				-				3	2	2	
CO2	3	3	2							-			3	2	2	
CO3	2	3	2						141		-		3	2	2	
CO4	3	2	2		1								3	2	2	
CO5	3	3	2		-	-							3	2	2	
000	3	High			-	2	Medi	um				1	Low			

Formative as	sessment	154 - S (C - S)	Total	
Bloom's . Level	Assessment Component	Marks	marks	
Demonsher	Classroom / Online Quiz/Group discussion	5		
Remember	int secondation	5	15	
Understand	Class Presentation/Power point presentation	6	1.035	
	Attendance	~		

Summative Assessment	Continuou	us Assessment 1	Tests	Terminal		
Bloom's Category	- 1 (7.5)	2 (7.5)	3 (10)	Examination (60)		
0 has	10	10	10	20		
Remember	10	10	10	20		
Understand		30	30	60		
Apply	30	00	0	0		
Analyse	0	0	0	0		
Evaluate -	- 0	0	0			
Create	0	0	0	0		

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council, Meeting on 06.11.2020

M.E. Applied Electronics (R2020)

20SEA026	DEEP LEARNING TECHNIQUES	L	T	P	C
and the second		3	0	0	3
Nature of Course	Professional Core		-	1	-
Pre requisites	Fundamentals of Basic Mathematics and Computer vision	11	1		

Course objectives:

- To understand the concept of deep learning and fundamental mathematics required for deep learning
- To know the core parametric function approximation techniques behind deep learning
- To appreciate the modern practical deep networks and their applications
- To study about the various deep learning models
- To know about applications and visualization of deep learning networks

Course outcomes

On successful completion of the course, students will be able to

CO.No.	Course Outcome	Bloom's Level
C01	Describe the concept of deep Learning and Fundamental mathematics	Knowledge .
C02	Explain the Concept of core parametric function approximation techniques	Understand
CO3	Describe the concept of modern practical deep networks and their applications	Understand
CO4	Identify the various deep learning models	Understand
.CO5	Outline the applications and visualization of deep learning networks	Understand

Course Contents:

UNIT I- INTRODUCTION AND PREREQUISITE MATHEMATICS

Introduction - Historical Trends in Deep Learning - Probability and Information Theory - The Chain rule of conditional probability - Bayes Rule - Machine Learning Basics - Supervised and Unsupervised learning algorithms.

UNIT II- MODERN PRACTICAL DEEP NETWORKS

Deep Feed forward Networks - Gradient-Based Learning - Back-Propagation and Other Differentiation Algorithms - Regularization for Deep Learning: Parameter Norm Penalties - Norm Penalties as Constrained Optimization - Challenges in training deep models

UNIT III- DEEP LEARNING NETWORKS

Convolution Networks Operation - Pooling - Recurrent Neural Networks - Bidirectional RNNs -Deep Recurrent Networks - Recursive Neural Networks

UNIT IV- DEEP GENERATIVE MODELS

Boltzmann Machines - Restricted Boltzmann Machines - Deep Belief Networks - Deep Boltzmann Machines - Boltzmann Machines for Real-Valued Data - Convolution Boltzmann Machines Boltzmann Machines for Structured or Sequential Outputs

UNIT V- APPLICATION AND VISUALIZATION

Large-Scale, Deep Learning - Computer Vision - Speech Recognition - Natural Language Processing - Other Applications - Visualizations - Visual Data Analysis Techniques - Interaction Techniques

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

Text Books

- 1. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.
- 2. Yusuke Sugomori, "Java Deep Learning Essentials", PACKT, 2016
- Timothy Masters, Deep Belief Nets in C++ and CUDA C: Volume 1: Restricted Boltzmann Machines and Supervised Feed forward Networks, 2015

References Books

- Jeff Heaton, Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks, Heaton Research, 2015
- 2. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

000	1		1					POs						PSOs			
COs	1		2	3	4	5	6	7	8	9	10	11	12	1 -	2	3	
CQ1	2		3	2		- ÷):							_	3	2	2	
CO2	3		3	2										3	2	2	
CO3	2		3	2					1					3	2	2	
CO4	3		2	2					h					3	2	2	
CO5	. 3		3	2	1			12	2					3	2	2	
1000	3	Hi	igh		2. 3		2	Medi	um	140			1	Low			

Formative as	sessment	A CONTRACTOR OF A	
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom / Online Quiz/Group discussion	5	1
Understand	Class Presentation/Power point presentation	5	15
	Attendance	5	8 8

Summative Assessment

	Continuo	us Assessment '	Tests	Terminal		
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)		
Remember *	10	10	10	20		
Understand	10	10	10	20		
Apply	30	30	30	60		
Analyse	0	. 0	0	. 0		
Evaluate	0	0	0	0		
Create	0	0	0	0		

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Council Meeting on 06.11.2020

20SEA027	IMAGE PROCESSING APPLICATIONS	L	Т	Ρ	С
		3	0	0	3
Nature of Course	Professional Core			Lance	Analoine
Pre requisites	Fundamentals of Digital Image Processing	100 million (100 million)		100	

Course objectives:

- To study the recognition and processing techniques.
- · To study the disease analysis and image analysis.
- . To study the spectral reflectance and classification strategies.
 - To study the classification of industries.
 - To study the video based models and object tracking methods.

Course outcomes

On successful completion of the course, students will be able to

1 - 50	Course Outcome	Bloom's Level
CO.No.		THE RECEIPTION OF THE
CO1 .	Explain the recognition and processing techniques.	Knowledge
CO2	Identify the disease analysis and image analysis.	Understand
CO3	Identify the spectral reflectance and classification strategies.	Understand
CO4	Outline the classification of industries.	Understand
CO5	Describe the video based models and object tracking methods.	Understand

Course Contents:

UNIT I - REMOTE SENSING & MONITORING APPLICATIONS

Introduction- Biometric Pattern Recognition- Face Recognition -Feature Extraction Selection-Face Identification -Signature Verification-Preprocessing of Signature Patterns

UNIT II - MEDICAL IMAGE APPLICATIONS

Lung Disease Identification-Heart Disease Identification- Bone Disease Identification-Dental X-Ray Image Analysis- Classification of Dental Carles- Mammogram Image Analysis-Pelvic Image Analysis

UNIT III- SATELLITE AND REMOTE SENSING APPLICATIONS

Introduction-Satellite sensors and imageries- Features of Multispectral Images- Spectral reflectance of various earth objects-Water Regions-Vegetation Regions-Soil- Manmade/Artificial Objects-Scene Classification Strategies-Neural Network-Based Classifier Using Error Back propagation- Counter propagation network

UNIT IV - INDUSTRIAL APPLICATIONS

Food Industry-Automotive Industry-Textile Industry-Agriculture Industry-Robotics

UNIT V - VIDEO PROCESSING APPLICATIONS

Pixel-based model- Shadow Detection-Surveillance system- Region-based model- Principles of object tracking-Case Study. Geometrical model- Video restoration -Case Study

TOTAL: 45 PERIODS

Passed in Board of studies Meeting on 28.10.2020

Approved in Academic Opuncil Meeting on 06.11.2020

CHAIRMAN - ACADEMIC COUNCIL

9

9

9

contrasts in the plantation beaution who beautions of the balls to

Text Books

 Tinku Acharya and Ajoy K. Ray-Image Processing Principles and Applications, A John Wiley & Sons, Mc., Publication 2005.

 Gonzalez & Woods — Digital Image Processing, 3rd ed., Pearson educaon, 2008 3. Ardeshir Goshtasby, " 2D and 3D Image registration for Medical, Remote Sensing and Industrial Applications", John Wiley and Sons, 2005.

Reference Books

S. Sridhar - Digital Image Processing, 2nd ed., Oxford University Press, 2016.
 Chanda Dutta Magundar - Digital Image Processing and Analysis, Prentice Hall of India, 2000.

Mapping of Course Outcomes (COs) with Program Outcomes (POs) Program Specific Outcomes (PSOs)

COs		-	÷.,	-	di.		POs	1					PSOs			
005	1	2	3	. 4	5	6	7	8	9	10	11	12	1	2	3	
C01	2	3	2										3	2	2	
C02	3	3	2					1					3	2	2	
C03	. 2	3	2			1			1	-12			3	2	2	
CO4	3	2	2										3	2	2	
C05	3	3	2							+			3	2	2	
1000	3	High			18	2	Media	m		1000		1	Low		-	

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Classroom / Online Quiz/Group discussion	5	
Understand	Class Presentation/Power point presentation	5	15
	Attendance .	5	-

Summative Assessment

Bloomin Cationer	Continuo	us Assessment	Tests	Terretori
Bloom's Category	1 (7.5)	2 (7.5)	3 (10)	Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Passed in Board of studies Meeting on 28.10.2020

CHAIRMAN - BOARD OF STUDIES

Approved in Academic Council Meeting on 06.11.2020

M.E Applied Electronics (R-2020)

	RESEARCH METHODOLOGY AND INTELLECTUAL	L	T	P	C
20PEE301	PROPERTIES RIGHTS	3	0	0	3
Nature of course	Professional core			111	
Pre requisites	Nit		_	_	

Course Objectives

The course is intended to

- 1. Impart knowledge and skills required for research problem formulation
- 2 Identify the relevant literatures for research
- 3. Develop skills on technical paper writing / presentation without violating professional ethics
- 4. Acquire knowledge on IPR and patents.
- 5. Gain knowledge on patent rights and Patent information database.

CO. No	ssful completion of the course, students will be able to Course Outcome	Bloom's Level					
CO 1	Identify and formulate research problem	Apply					
CO 2	0.2 Concentrate on literatures related to research problem.						
CO 3	Possess the ability to write a standard technical paper and presentation.	Apply					
CO 4	Find the correct procedure for applying patents	Apply					
CO 5	Become well versed on patent rights, licensing and transfer of technology.	Understand					

9		Course C
	Research Problem Formulation	Unit-1
action, analysis,	of research problem- Sources of research problem, criteria characterist problem, errors in selecting a research problem, scope and objective Approaches of investigation of solutions for research problem, data collec- tion, necessary instrumentations.	research problem, /
9	Literature Review	Unit-II
	Renature studies approaches, analysis, plagiarism, and research ethics.	Effective #
9	Technical Writing /Presentation	Unit - III
committee.	technical writing, how to write report, paper, developing a research propo proposal, Latex Programming ,a presentation and assessment by a review of	Effective to research p
9	Introduction to Intellectual Property Rights (IPR)	
ig covereption,	Intellectual Property: Patents, Designs, Trade and Copyright. Process of nent: technological research, Research Hypothesis, Innovation, patenting International Scenario: International cooperation on Intellectual Property, patents, Patenting under PCT.	Developme Citation, Ir
9	Intellectual Property Rights (IPR)	I Init - V
itudies, IPR and	ghts: Scope of Patent Rights, Licensing and transfer of technology, Patent is a. Geographical Indications, New Developments in IPR: Administration of I ological Systems, Computer Software etc. Traditional knowledge Case Str	Patent Rig
tal: 45 Period	Tot	1119.

Passer in Board of studies Meeting on 39.05.2021 Approved in Academic Council Meeting on 04.10.2021

CHAIRMAN - BOARD OF STUDIES

Reference Books

- Asimov, "Introduction to Design", Prentice Hall, 1962.
 Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd., 2007.
 Mayall, "Industrial Design", McGraw Hill, 1992.
 Niebel, "Product Design", McGraw Hill, 1974.
 Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners" 2010.

COs	P				5									PSOs		
GOS	4	2	3	4	5	6	7	8	9	10	11	12	4	2	3	
CO 1	3	3			3	3		2				3		2		
CO 2	3	3			3	3		2				з		2		
CO 3	3	3			3	3		2				3	1	2		
CO 4	3	3 0			3	3		2				3		2		
CO 5	3	3	1		3	3		2			1	3		2		

	Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks					
Remember	Online Quiz	5						
Understand	Tutorial Class / Assignment	5	15					
	Attendance	5						

	Sum	mative Assessi	ment	and the latter of		
	Interna					
Bloom's Category	IAE -1 (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60		
Remember	10	10	10	20		
Understand	10	10	10	20		
Apply	30	30	30	60		
Analyze			1			
Evaluate	17-20					
Create						

Passed in Board of studies Meeting on 30.08.2021 Approved in Academic Council Meeting on 94.10.2021

M.E Applied Electronics (R-2020)

	PRO INCT WORK DUARS	L	T	P	С
20PAE301	PROJECT WORK PHASE - I	0	0	12	6
Nature of course	Employability Enhancement Course				
Pre requisites	Concepts of Research Methodology				

Course Objectives

The course is intended to

- 1. Identify a specific problem for the current structural needs of the society.
- 2. Collect information related to the same through detailed review of literature.
- 3. Develop the methodology to solve the identified problem
- 4. Review the methodology and comparing its merits and dements.
- 5. Experimental work related to the methodology which includes basic concepts , basic tests
- Course Outcomes

CO. No	Course Outcome	Bloom's Level					
CO 1	Identify and formulate research problem	Apply					
CO 2	Concentrate on literatures related to research problem.						
CO 3	Possess the ability to write a standard technical paper and presentation.	Apply					
CO 4	Find the correct procedure for applying patents	Apply					
CO 5	Become well versed on patent rights, licensing and transfer of technology.	Understand					

Course Contents

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

Total : 180 Periods

Am

CHAIRMAN - BOARD OF STUDIES

Passed in Board of studies Meeting on 30 08 2021 Approved in Academic Council Meeting on 04:10:2021

COs	POs												PSOn		
	3	2	3	4	5	6	7	13	ġ	10	11	12	1	2	3
CO 1	3	3	3	3	3	3	3	3	3	3	3	3	2	3	
CO 2	3	3	3	3	3	3	3	3	3	3	3	3	2	3	
CO 3	3	3	3	3	3.	3	0	3	3	3	3	3	2	3	
CO 4	3	3	3	3	3	3	3	3	3	3	3	3	2	3	
CO.5	3	3	3	3	3	3	3	3	3	3	3	3	2	3	

	Continuous Assessment [50 marks]								
	Review I [10]	Review II [10]	Review III [10]	Publication [10]	Report [10 Marks]	Total [50]	Voce Examination [50 marks]		
Marks	100	100	100	10	10	50	50		

S IL COMPANY AND AND

Passed in Board of studies Meeting on 30.08 2021 Approved in Academic Council Meeting on 04.10.2021

M.E Applied Electronics (R-2020)

100000000000000		L	T	P	C
20PEA018	Signal Integrity for High Speed Design	3	0	0	3
Nature of course	Professional Elective	- 11	1		
Pre requisites	Transmission Lines and RF Systems				

Course Objectives

The course is intended to

- 1. Acquire the Knowledge of Signal Propagation on Transmission Lines.
- 2. Understand the Multi Conductor Transmission Lines.
- 3. Analyze the Non Ideal characteristics of Transmission lines.
- Design the systems for power consideration.
- 5. Explain the Clock Distributors and Oscillators.

Course Outcomes

On successful completion of the course, students will be able to

CO, No	Course Outcome	Bloom's Level
CO 1	Acquire the Knowledge of Signal Propagation on Transmission Lines.	Remember
CO 2	Observe the Multi Conductor Transmission Lines.	Understand
CO 3	Analyze the Non-Ideal characteristics of Transmission Lines.	Analyze
CO 4	Design the systems for power consideration.	Understand
CO.5	Explain the Clock Distributors and Oscillators.	Understand

Course Contents

Unit-1	Signal Propagation On Transmission Lines	9
impedant field map stackups microstrip	sion line equations, wave solution, wave vs. circuits, initial wave, delate e, wave propagation, reflection, and bounce diagrams Reactive termins of micro strip and strip line cross-sections, per unit length part and layer/Cu thicknesses, cross-sectional analysis tools. Zo an and stripline Reflection and terminations for logic gates, fan-out, lo e into a transmission-line section, reflection coefficient, skin-effect, dis	nations – L, C, static rameters, PCB layer d Td equations for poic switching input
impedance	Multi-Conductor Transmission Lines And Cross-Talk	or to Labour L.

cross-talk, minimizing cross-talk (stripline and micro strip) Differential signaling, termination, balanced circuits S-parameters, Lossy and Lossless models

Unit - III Non-Ideal Effects

Non-ideal signal return paths - gaps, BGA fields, via transitions , Parasitic inductance and capacitance , Transmission line losses - Rs, tanð , routing parasitic, Common-mode current, differential-mode current , Connectors

Unit - IV Power Considerations And System Design

DC power bus design , layer stack up, SMT decoupling ... Logic families, power consumption, and system power delivery . Logic families and speed Package types and parasitic, SPICE, IBIS models ,Bit streams, PRBS and filtering functions of link-path component, Eye diagram, jitter, inter-symbol Interference Bit-error rate.

Unit - V Glock Distribution And Clock Oscillators

Timing margin, Clock slew, low impedance drivers, terminations, Delay Adjustments, canceling parasitic capacitance, Clock jitter.

Total: 45 Periods

9

9

9

Passed in Board of studies Meeting on 30.06.2021 Approved in Academic Council Meeting on 04.10.2021

Text Books

- Douglas Brooks, Signal Integrity Issues and Printed Circuit Board Design, Prentice Hall PTR, 2003
- 2. Eric Bogatin," Signal and power Integrity "Pearson Publisher, Third Edition .2018.

Reference Books

- Stephen H. Hall, Howard L. Heck, "Advanced Signal Integrity for High Speed Digital Design" Wiley Publisher, First Edition, 2011.
- H. W. Johnson and M. Graham, High-Speed Digital Design: A Handbook of Black Magic, Prentice Hall, 2002
- S. Hall, G. Hall, and J. McCall, High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices, Wiley-Interscience, 2008.

Additional / Web References

- 1. https://www.the.technologyacademy.com/online-course/
- 2. https://www.doulos.com/training/signal-intergrity

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs) POs PSOs COS 1 2 3 4 5 6 7 8 3 10 11 12 1 2 3 3 2 2 2 CO 1 2 3 2 2 2 2 CO 2 3 3 3 2 2 CO 3 2 2 3 3 3 CO 4 3 3 2 2 3 CO 5 3 High 2 Medium 1 LOW

	Formative assessment	б	
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Sum	mative Assess	iment	
	Interna	I Assessment		
Bloom's Category	IAE-1(7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)
Remember	10	10	10	20
Understand	30	30	30	60
Apply	0	0	0	0
Analyze	10	10	10	20
Evaluate	0	0	0	0
Create	0	0	10	0

Parted in Board of studies Meeting on 30 06:2021 Approved in Academic Council Meeting on 04.10.2021

M.E Applied Electronics (R-2020)

	NEND AND NEMP	L	T	P	C
20PEA019	MEMS AND NEMS	3	0	0	3
Nature of course	Professional Elective		111		
Pre requisites	VLSI				

Course Objectives

The course is intended to

- 1. To introduce the concepts of micro electro mechanical devices.
- 2. To know the fabrication process of Microsystems.
- 3. To know the design concepts of micro sensors
- 4. To know the design concepts of micro actuators
- 5. To familiarize concepts of quantum mechanics and nano systems

Course Outcomes

CO. No	Course Outcome	Bloom's Level
CO 1	Examine the concepts of micro electro mechanical devices	Remember
CO 2	Interpret the fabrication process of Microsystems.	Understand
CO 3	Illustrate the concepts of micro sensors.	Understand
CO 4	Determine the concepts of Micro Actuators.	Understand
CO 5	Develop the familiarize concepts of quantum mechanics and nane systems	Apply

Course Contents

Unit – I Overview 9 New trends in Engineering and Science: Micro and Nanoscale systems, Introduction to Design of MEMS and NEMS, MEMS and NEMS – Applications, Devices and structures. Materials for MEMS Silicon, silicon compounds, polymers, metals

Unit - II Mems Fabrication Technologies

Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation, Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect- Ratio (LIGA and LIGA-like) Technology; Packaging; Microsystems packaging, Essential packaging technologies, Selection of packaging materials...

Unit - III Micro Sensors

MEMS Sensors Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these Microsensors. Case study: Piezo-resistive pressure sensor.

Unit - IV | Micro Actuators

Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps. Case study: Comb drive actuators

Unit - V Nano systems And Quantum Mechanics

Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics. Schrodinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.

Total: 45 Periods

ġ

9

9

P.

Passed in Board of studies Meeting on 30 08 2021 Approved in Academic Council Meeting on 04 10 2021

CHAIRMAN - BOARD OF STUDIES

Text Books

1. Tal Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2012

2. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2012.

Reference Books

- 1. Marc Madou, "Fundamentats of Microfabrication", CRC press 2017
- 2. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2005
- Sergey Edward Lyshevski, "MEMS and NEMS: Systems, Devices, and Structures" CRC, 2018

Additional / Web References

- 1 https://www.coursera.org/lecture/sensor-manufacturing-process-control
- 2. https://nptel.ac.in/courses/117/105/117105082/

COs	_	POs										PSOs			
003	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	3	2	3									3	2	2
CO 2	з	3	2	3									З	2	2
CO 3	2	3	2	2									3	2	2
CO 4	3	2	2	3							1		3	2	2
CO 5	3	3	2	3									3	2	2

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	10

	Sum	mative Assessm	nent	
	Interna	I Assessment I		
Bloom's Category	IAE-1(7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)
Remember	10	10	10	20
Understand	30	30	30	60
Apply	10	10	10	20
Analyze	The second second second	I I I I I I I I I I I I I I I I I I I	3	Contraction of the local division of the loc
Evaluate		and the second		
Create	L SEHER		-	

#ssed in Board of studies Meeting on 30:06.2021 Approved in Academic Council Meeting on 64, 10:2021

20054020		L	T	P	C
20PEA020	SECURE COMPRISING SYSTEMS	3	0	0	3
Nature of course	Professional Elective		ht		-
Pre-requisites	Computer Architecture And Organization				

Course Objectives

The course is intended to

- 1. Learn Computer Security and Management.
- 2. Acquire the Knowledge of Computer Hardware Architecture.
- Expose Assembly and Operating systems Security.
 Study the Advanced Computer Architecture.
 Know the Network and web security

Course Outcomes

CO. No	Course Outcome	Bloom's Level
CO 1	Show the computer security and management.	Remember
CO 2	Oulline the Computer Hardware Architecture.	Understand
CO 3	Infer Assembly and Operating systems security.	Understand
CO 4	Identify the Advanced computer Architecture	Apply
CO 5	Examine Network and Web security.	Apply

Course Contents

	Computer Security And Management	9
Security	v of Computer Security, Threats, Malware, Vulnerabilities, Authentication Management Models, Security Management Practices, Protection M of security, Ethical Hacking.	n, Access Control, echanisms, Legal
Unit-II	Hardware Security	9
attack. Physical	r Hardware Security, Computer Memory and storage, Bus and Interco Interface, CPU, Side channel Analysis: Power Analysis Attack, Tim Countermeasures of Side Channel Attack, Secure Hardware Intelli ly Unclonable Functions (PUFs), Secure PUF.	ting Attack Equit.
Unit – III	Assembly And Operating Systems Security	9
System	Operands, Addressing Modes, Stack and Buffer Overflow, FIFO and Drivers and OS Security; Secure Design Principles, Trusted Operating Function. Advanced Computer Architecture	Systems, Trusted
Course - Th		9
Security and clou	aspects : Multiprocessors, parallel processing, Ubiquitous computing d computing, Internet computing, Virtualization	9 , Grid, Distributed
Security and clou Unit – V	Network and Web security	, Grid, Distributed
Security and clau Unit – V ATCP/IP Address Attacks,	o computing, internet computing, Virtualization	, Grid, Distributed
Security and clou Unit – V ATCP/IP Address Attacks,	Network and Web security Protocol, Network switches, Routers, Gateways, Wireless Network Translation (NAT); Network Security Issues in TCP/IP, Threat Models, Firewalls, Intrusion Detection, Browser Attacks, Web Attacks Targe Secure Shell (SSH), HTTPS	, Grid, Distributed

- Charles B. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", Fourth Edition, Pearson Education, 2007
- Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, "Hardware Security Design Threats and Safeguards", CRC Press, 2015

Reference Books

- Michael Whitman, Herbert J. Mattord, "Management of Information Security", Third Edition, Course Technology, 2018
- 2. Shuangbao Wang, Robert S Ledley, Computer Architecture and Security, Wiley, 2013
- William Stallings, "Network Security Essentials, Applications and Standards", Dorling Kindersley I P Ltd, Delhi, 2008.

Additional / Web References

- 1. https://www.coursera.org/specializations/computer-security-systems-management/
- 2. https://www.coursera.org/specializations/embedded-systems-security

COs		POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	3	4										3	1		
CO 2	3	2	2										3	1	1	
CO 3	3	3	2										3	1	t	
CO.4	3	2											3	1		
CO 5	3	2	2										3	1	1	
	3	Hig	h			2	Met	sum		-		1	Low			

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

Passed in Board of studies Meeting on 30.06 2021 Approved in Academic Council Meeting on 04.10.2021

	Sum	mative Assessm	nent	
	Interna	Assessment	10000	
Bloom's Category	IAE -1 (7.5)	IAE - II (7.5)	LAE - III (10)	Final Examination (60)
Remember	10	10	10	20
Understand	30	30	30	60
Apply	10	10	10	20
Analyze				
Evaluate				
Create				

Passed in Board of studies Meeting on 30.06.2021 Approved in Academic Council Meeting on 04.19.2021

CHAIRMAN - BOARD OF STUDIES

All Andrew Marks		Ļ	T	P	C
20PEA021	PATTERN RECOGNITION	3	0	0	3
Nature of course	Professional Elective				
Pre regulaites	Digital Intage Processing				

Course Objectives

The course is intended to

- 1 Learn about supervised and unsupervised pattern classifiers.

- Learn about Clustering.
 Familiarize about different feature extraction techniques.
 Explore the role of Hidden Marko model and SVM in pattern recognition.
- 5. Understand the application of Fuzzy logic and genetic algorithms for pattern classifier

	Autoomes Issful completion of the course, students will be able to	
CO. No	Course Outcome	Bloom's Level
CO 1	Observe the supervised and unsupervised pattern classifiers.	Remember
00.2	Interpret the Clustering.	Understand
CO 3	Express about different feature extraction techniques.	Apply
CO4	Identify the role of Hidden Marko model and SVM in pattern recognition	Apply
005	Understand the application of Fuzzy logic and genetic algorithms for pattern classifier.	Understand

Course (Contents	
Unit-1	Pattern Classifier	9
estimatic	v of Pattern recognition – Discriminant functions – Supervised on – Maximum Likelihood Estimation – Bayesian parameter Est oproach– Pattern classification by distance functions –Minimum dis	imation - Problems with
	Clustering	9
Clusterin Hierarch	ig for unsupervised learning and classification-Clustering conceptical clustering – Graph theoretic approach to pattern Clustering –V	t – C Means algorithm – alldity of Clusters
Unit – III	Feature Extraction And Structural Pattern Recognition	9
descripti	 component analysis, Independent component analysis, Linea selection through functional approximation – Elements of form on – Stochastic grammars – Structural Representation. 	ir discriminant analysis, tal grammars, Syntactic
Unit - IV	/ Hidden Markov Models And Support Vector Machine	9
State Ma Feature	schines – Hidden Markov Models – Training – Classification – S Selection	upport vector Machine -
	Recent Advances	
Fuzzy io Study Us	gic – Fuzzy Pattern Classifiers – Pattern Classification using G sing Fuzzy Pattern Classifiers and Perception.	enetic AlgorithmsCase
		Total : 45 Periods

Passad in Board of studies Meeting on 30.06.2021 Approved in Academic Council Meeting on 04.10.2021

- 1. Andrew Webb, "Stastical Pattern Recognition", Arnold publishers, London, 1999.
- C.M.Bishop, "Pattern Recognition and Machine Learning", Springer, 2005 2.

Reference Books

- M. Narasimha Murthy and V. Susheela Devi, "Pattern Recognition", Springer 2011.
 Menahem Friedman, Abraham Kandel, "Introduction to Pattern Recognition Statistical, Structural, Neural and Fuzzy Logic Approaches", World Scientific publishing Co. Ltd, 2000.
- 3. Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural Approaches", John Wiley & Sons Inc., New York, 2005.

Additional / Web References

- 1. https://www.coursera.org/courses?query=pattern%20recognition
- 2. https://nptel.ac.in/courses/106/106/106106046/

COs	POs													PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12		2	3	
CO 1	3	3	2							1.1.1.1			3	3	-2	
CO 2	3	3	2										1	3	3	
CO 3	3	3	2										2	3	2	
CO 4	3	3	2										1	3	1	
CO 5	3	3	2						12.5				2	3	1	

Total marks
15

	Sum	mative Assess	nent	
	Interna			
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze	ALL DOM			
Evaluate.				
Create	Second Street of Street		18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Passed in Board of studies Meeting on 30 06 2021 Approved in Academic Council Meeting on 04 10 2021

20PAE401	PROJECT WORK PHASE - II	L	T	P	C
	TROCET WORKTHADE -II	0	0	24	12
Nature of course	Employability Enhancement Course				
Pre requisites	Knowledge in Electronics Engineering	-			

Course Objectives

The course is intended to

- 1. Solve the identified problem based on the formulated methodology
- 2. Develop skills to analyze the problem related to area.
- 3. Continue the trials until the expected positive results are obtained
- 4. Preparation of preliminary report and discussion on test results
- 5. Arrive at conclusion and suggestion for future works.

Course Outcomes

On successful completion of the course, students will be able to

CO. No	Course Outcome	Bloom's Level
CO 1	Select different software/ computational/analytical tools.	Select
CO 2	Design and develop an experimental set up/ equipment/test rig.	Creating
CO 3	Conduct tests on existing setup with equipments and draw logical results.	Analyzing
CO 4	Conclude the results with suitable remarks and suggestion for further extension of work.	Evaluating
CO 5	Present their topic of study to the engineering community.	Apply

Course Contents

The student should continue the phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report and the viva-voce examination by a panel of examiners including one external examiner.

Total : 360 Periods

COs				PO	1.									PSOs	
cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	3	3	3	3	3	3	3	2	3	
CO 2	3	3	3	3	3	3	3	3	3	3	3	3	2	3	
CO 3	3	3	3	3	3	3	3	3	3	3	g	3	2	3	
CO 4	3	3	3	3	3	3	3	3	3	3	3	3	2	3	
CO 5	3	3	3	3	3	3	3	3	3	3	3	3	2	3	

Passed in Board of studies Meeting on 30.06.2021 Approved in Academic Council Meeting on 04.10.2021

		Contin	nuous Asse	ssment [50 ma	irks]		Final Viva
	Review 1 [10]	Review II [10]	Review III [10]	Publication [10]	Report [10 Marks]	Total [50]	Voce Examination [50 marks]
Marks	100	100	100	10	10	50	50

Shue

Passed in Board of studies Meeting on 30.06.2021 Approved in Academic Council Meeting on 04.10.2021

9

9

9

20PFA022	RF IC DESIGN	L	Т	P	С
a ur antitute a	IT IS DESIGN	3	0	0	3
Nature of course	Professional Elective		100071		
Pre requisites	Electronic circuits		_		

Course Objectives

The course is intended to

- 1. To study the various impedance matching techniques used in RF circuit design.
- 2. To understand the functional design aspects of amplifier and LNAs
- 3. To know the various concepts of active and passive Mixers-
- 4. To study the principles of operation of RF Oscillators
- 5. To analyze the design and apply constraints for PLL and Frequency synthesizers.

	utcomes ssful completion of the course, students will be able to	
CO. No	Course Outcome	Bloom's Level
CO 1	Find the various impedance matching techniques used in RF circuit design.	Remember
CO 2	Interpret the functional design aspects of amplifier and LNAs	Understand
CO 3	Explain the various concepts of active and passive Mixers	Understand
CO 4	Illustrate the principles of operation of RF Oscillators	Apply
CO 5	Analyze the design and apply constraints for PLL and Frequency Synthesizers.	Analyze

Course Contents

Unit-1	Impedance Matching In Amplifiers	9
and I ne	of "Q, series parallel transformations of lossy circuits, impedance matching using "L, "P etworks. Integrated inductors, resistors, Capacitors, tunable inductors, transformers.	r
Unit – II	Amplifier Design	9

Noise characteristics of MOS devices, Design of CG LNA and inductor degenerated LNAs, Principles of RF Power Amplifiers design.

Unit - III Active and Passive Mixers

Qualitative Description of the Gilbert Mixer - Conversion Gain, and distortion and noise, analysis of Gilbert Mixer - Switch in Mixer - Distortion in Unbalanced Switching Mixer - Conversion Gain in Unbalanced Switching Mixer - Noise in Unbalanced Switching Mixer - A Practical Unbalanced Switching Mixer. Sampling Mixer - Conversion Gain in Single Ended Sampling Mixer - Distortion in Single Ended Sampling Mixer - Intrinsic Noise in Single Ended Sampling Mixer - Extrinsic Noise in Single Ended Sampling Mixer.

Unit-IV Oscillators

LC Oscillators, Voltage Controlled Oscillators, Ring oscillators, Delay Cells, tuning range in ring oscillators, Tuning in LC oscillators, Tuning sensitivity, Phase Noise in oscillators, sources of phase noise.

Unit - V PLL and Frequency Synthesizers

Phase Detector/Gharge Pump, Analog Phase Detectors, Digital Phase Detectors, Frequency Dividers, Loop Filter Design, Phase Locked Loops, Phase noise in PLL, Loop Bandwidth, Basic Integer-N frequency synthesizer, Basic Fractional-N frequency synthesizer.

Passed in Board of studies Meeting on 30:06:2021 Approved in Academic Council Meeting on 04:10:2021

Total : 45 Periods

Text Books

1. B.Razavi ,"RF Microelectronics" , Prentice-Hall ,2011

 Bosco H Leung "VLSI for Wireless Communication", Second edition, Springer, 2011 Reference Books

1. Behzad Razavi, "Design of Analog CMOS Integrated Circuits" McGraw-Hill, 2017.

2. Jia-sheng Hong, "Microstrip filters for RF/Microwave applications", Wiley, 2011

 Thomas H.Lee, "The Design of CMOS Radio – Frequency Integrated Circuits", Cambridge University Press (2003)

Additional / Web References

- 1. https://www.coursera.org/learn/rf-mmwave-circuit-design
- 2. https://www.udemy.com/course/introduction-to-radio-frequency-integrated-circuit-design/

COs				POs	£									PSOs	1 ()
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	2	3									3	2	2
CO 2	3	3	2	3									3	2	2
CO 3	3	3	2	2									3	2	2
CO 4	3	2	2	2				101					3	2	2
CO 5	3	3	2	2									3	2	2

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quíz	5	
Understand	Tutorial Class / Assignment	5	
	Attendance	5	15

	Sum	mative Assessi	nent		
	Interna	I Assessment I			
Bloom's Category	1AE -1 (7.5)	IAE-11 (7.5)	IAE - III (10)	Final Examination (60)	
Remember	10	10	10	20	
Understand	10	10	10	20	
Apply	30	30	30	80	
Analyze				00	
Evaluate			and the second second		
Create	1000				

Passed in Board of studies Meeting on 30.06.2021 Approved in Academic Council Meeting on 04.10.2021

20PEA023	NANO SCALE DEVICES	L	T	P	C
20PEA025	NANO SCALE DEVICES	3	0	0	3
Nature of course	Elective Core		-		-
Pre requisites	VLSI Design				

Course Objectives

The course is intended to

- 1. Introduce the basic concepts of nano scale MOS transistors.
- 2. Understand the physical insights of MOS systems.
- 3. Introduce the nano wire FETS and transistors using molecular scale
- 4. Study various radiation effects in MOSFETS.
- 5. Explain the sampling, impulse response and convolution in CT and DT signals.

Course	Outcomes	
On suc	cessful completion of the course, students will be able to	
CO. No	Course Outcome	Bloom's Level
CO 1	Examine the basic concepts of nano scale MOS transistors.	Remember
CO 2	Illustrate the physical insights of MOS systems	Understand
CD 3	Explain the basic concepts and characteristics of nano wire FETS and transistors	Apply
CO 4	Analyze the radiation effects of MOSFETS.	Analyze
CO 5	Analyze the analog and digital circuits using multi gate devices	Analyze

Course Contents

Unit-I	Impedance Matching in Amplifiers	9
dielectric gate - de threshold	F scaling, short channel effects - channel engineering - source/drain engine - copper interconnects - strain engineering, SOI MOSFET, multigate train ouble gate - triple gate - surround gate, quantum effects - volume inversi d voltage - inter subband scattering, multigate technology - mobility - gate s	isistors - single
Unit-II		9
CMOS T thickness	ectrostatics – 1D – 2D MOS Electrostatics, MOSFET Current-Voltage C echnology – Ultimate limits, double gate MOS system – gate voltage effect a effect – asymmetry effect – oxide thickness effect – electron tunnel inal confinement, scattering – mobility.	- semiconductor
Unit – III	Active And Passive Mixers	9
degenera nanotube nanotube Schottky	anowire MOSFETs – Evaluation of I-V characteristics – The I-V characteristics atte carrier statistics – The I-V characteristics for degenerate carrier statistics – Band structure of carbon nanotube – Band structure of graphene – Physica – Band structure of nanotube – Carbon nanotube FETs – Carbon nanotube barrier carbon nanotube FETs – Electronic conduction in molecules.	istics - Carbon ical structure of
	Oscillators	9
Radiation devices,	effects in SOI MOSFETs, total ionizing dose effects - single gate S single event effect, scaling effects.	OI - multigate
Unit - V	PLL and Frequency Synthesizers	9
Digital cir multi VT	rcuits impact of device performance on digital circuits leakage performance devices and circuits SRAM design analog circuit design transcendure	ance trade off -

multi VT devices and circuits – SRAM design, analog circuit design – transconductance - intrinsic gain – flicker noise – self heating –band gap voltage reference – operational amplifier – comparator designs, mixed signal – successive approximation DAC, RF circuits.

Total : 45 Periods

Passed in Board of studies Meeting on 30.05.2021 Approved in Academic Council Meeting on 64.10.2021

- Brajesh kumar Kaushik, "NanoScale Devices: Physics, Modeling and their applications, CRC Publisher, First Edition, 2020.
- Risal Singh Mital Gupta, "Introduction to Nanotechnology", Oxford University, First Edition 2018.

Reference Books

- J P Colinge, "FINFETs and other multi-gate transistors", Springer Serieson integrated circuits and systems, 2008
- Mark Lundstrom, Jing Guo, "Nanoscale Transistors: Device Physics, Modeling and Simulation", Springer, 2006
- M S Lundstorm, "Fundamentals of Carrier Transport", 2nd Ed., Cambridge University Press, Cambridge UK, 2009

Additional / Web References

- 1. https://www.coursera.org/learn/nanotechnology
- 2 https://nanohub.org/resources/courses?view=tags

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs) PSOs POs COs 3 4 8 9 10 11 12 2 3 1 5 6 1 2 7 3 2 2 2 2 2 CO 1 3 2 3 2 2 2 CO 2 3 2 2 3 3 CO 3 E 3 2 2 2 3 CO 4 2 3 2 2 3 3 CO 5 3 2 High Medium 1 Low

	Formative assessment		-
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Sum	mative Assessm	ment			
	Interna	I Assessment I				
Bloom's Category	IAE -1 (7.5)	IAE - II (7,5)	IAE III (10)	Final Examination (60)		
Remember	10	10	10	20		
Understand	10	10	10	20		
Аррђу						
Analyze	30	30	30	60		
Evaluate				Area A		
Create						

Passed in Board of studies Meeting on 30.06 2021 Approved in Academic Council Meeting on 04.10.2021

20PEA024	OVOTEM ON OUR DECION	L	Т	P	C
ZUPEAUZ4	SYSTEM ON CHIP DESIGN	3	0	1911 1000 1100	3
Nature of course	Professional Elective				
Pre requisites	VLSI				

Course Objectives

The course is intended to

- 1. To understanding of the concepts, issues, and process of designing highly integrated SoCs.
- 2. To analyse the algorithms of software inorder to optimise the system based on requirements and implementation constraints.
- 3. To evaluate the co-design approach and virtual platform models.
- 4. To formulate system and hardware level synthesis for integrated SoCs.
- 5. To testing the verification principles of SoCs

Course Outcomes

CO. No	Course Outcome	Bloom's Level
CO 1	Understanding of the concepts, issues, and process of designing highly integrated SoCs	Understand
CO 2	Analyse algorithms of software in order to optimise the system based on requirements and implementation constraints	Analyze
CO 3	Evaluate the co-design approach and virtual platform models	Analyze
CO 4	Assess system and hardware level synthesis for integrated SoCs	Evaluate
CO 5	Testing the verification principles of SoCs	Evaluate

Course Contents

Unit-I Introduction

Introduction to SoC Design, system level design, methodologies and tools, system hardware: IO, communication, processing units, memories; operating systems; prediction of execution, real time scheduling, embedded OS, middle ware; Platform based SoC design, multiprocessor SoC and Network on Chip, Low power SoC Design

Unit-II System Level Modelling

SystemC overview, Data types, modules, notion of time, dynamic process, basic channels, structure communication, ports and interfaces, Design with examples

Unit-III Hardware Software Co-Design

Analysis, partitioning, high level optimisations, real-time scheduling, hardware acceleration, voltage scaling and power management; Virtual platform models, co-simulation and FPGAs for prototyping. of HW/SW systems.

Unit-IV Synthesis

System synthesis: Transaction Level Modelling (TLM) based design, automatic TLM generation and mapping, platform synthesis, software synthesis: code generation, multi task synthesis, internal and external communication; Hardware synthesis: RTL architecture, Input models, estimation and optimisation, resource sharing and pipelining and scheduling ġ,

Unit - V Soc Verification and Testing

SoC and IP Integration, Verification ; Venfication technology options, venfication methodology, overview; system level verification, physical verification, hardware/software co-verification; Test requirements and methodologies. SoC design for testability - System modeling, test power dissipation, test access mechanism.

Total : 60 Periods

Passed in Board of studies Meeting on 30 06:2021 Approved in Academic Council Meeting on 04 10:2021

- 1. Vijay K. MadisettiChonlamethArpikanondt, "A Platform-Centric Approach to System-on-Chip (SOC) Design", Springer, 2010. Youn-Long Steve Lin, Essential Issues in SOC Design Designing Complex Systems-or
- Chip, Springer, 2006.

Reference Books

- 1. D. Black, J. Donovan, SystemC: From the Ground Up, Springer, 2009.
- 2. D. Galski, S. Abdi, A. Gerstlauer, G. Schimer, Embedded System Design: Modeling, Synthesis, Verification, Springer, 2009
- 3. Enk Larson, Introduction to advanced system-on-chip test design and optimization, Springer 2005

Additional / Web References

- 1. https://www.udemy.com/course/visi-system-on-chip-design/
- 2. https://nanohub.org/courses/ECE895R

COs	-				PSOs										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	4	2	2										2	
CO 2	3	2	2	2										2	111
CO 3	3	3	2	2										3	
CO 4	3	3	2	2	15							1		3	
CÓ 5	3	3.	2	2										3	

	Formative assessment	8	
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Sum	mative Assess	ment			
	Interna	I Assessment	Examinations			
Bloom's Category	IAE -1 (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)		
Remember						
Understand	10	10	10	20		
Apply						
Analyza	30	30	30	60		
Evaluate	10	10	10	20		
Create						

Assed in Board of studies Meeting on 30.06.2021 Approved in Academic Council Meeting on 04.10.2021

20APE025	WAVELETS AND SIGNAL PROCESSING	L	T	P	C
LURI LUZS	WATELETS AND SIGNAL PROCESSING	3	1	0	4
Nature of course					
Pre requisites			_		

Course Objectives

The course is intended to

- 1. Understand the multi resolution analysis for discrete signals
- 2. Study the families of wavelets
- 3. Solve discrete wavelet transforms.
- 4. Analyze the filter banks
- 5. Explain the wavelet transforms, types and applications of multi resolution analysis

Course	e Outcomes	
Onsu	ccessful completion of the course, students will be able to	
CO. No	Course Outcome	Bloom's Level
CO 1	Discuss about multi resolution analysis for discrete signals	Understand
CO 2	Explain the families of wavelets	Understand
CO 3	Solve Discrete wavelet transform	Apply
CO 4	Analyze the filter banks	Analyze
CO 5	Illustrate an outline about wavelet transforms, types and applications of multi resolution analysis	Analyze

Course Contents

Unit-1	Multi Resolution Analysis (MRA)	12
Analysis Elements	on to multi resolution/ multi scale analysis-Time-frequency analysis constant approximation-Haar wavelet-Building up the concept of dyadic 1 (MRA)-Relating dyadic MRA to filter banks-Review of discrete signa of multi rate systems - Two band filter bank design for dyadic wavelets	and wavelets-
Unit-II	Families of Wavelets	12
ALLAND		

Orthogonal and Biorthogonal wavelets-Daubechies' family of wavelets-Conjugate Quadrature Filter Banks (CQF) and their design-Data compression- Fingerprint compression standards- JPEG 2000 standards-problems

Unit - III Discrete Wavelet Transform

Discretization in steps-Discretization of scale-Generalized filter bank-Discretization of translation-Generalized output sampling-Discretization of time/ space (independent variable) - from piecewise linear to piecewise polynomial - The class of spline wavelets - A case for infinite impulse response (IIR) filter banks

Unit - IV Filter Banks

Introduction to Variants of the wavelet transform-Implementational structures-The wave packet transform-Computational efficiency in realizing filter banks-Polyphase components-The lattice structure - The lifting scheme - Problems.

Unit - V Applications

Transient analysis-Singularity detection-Biomedical signal processing applications-Efficient signal design and realization-Wavelet based modulation and demodulation-Applications in mathematical approximation - Applications to the solution of some differential equations – Problems.

Total: 60 Periods

12

12

12

Passed in Board of studies Meeting on 30 06:2021 Approved in Academic Council Meeting on 04:10:2021

TEAt Books

1. C. S. Burrus, Ramesh A. Gopinath, and Haitao Guo, Introduction to Wavelets and Wavelet Transforms: A Primer, Prentice Hall, 1997

Gilbert Strang, Truong Ngoyen, Wavelets and Filter Banks, 2nd ed., Wellesley-3

Cambridge Press, 1998

Roference Books

1 M. Venerli, J. Kovacevic, Wavelets and Subtrand Goding, Prentice Hall, 1995

- 2. S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, 1999
- 3 P.P. Veidyanathan, Multirate Systems and Filter Banks, Pearson Education, 1993

Additional / Web References

1. https://classcentral.com/course/swayam-foundations-of-wavelets-and -multirate-digitalsignal-processing-5805.

https://aptel.ac.in/courses/117/101/117101001/

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Programme Specific Outcomes (PSOs)

-	T			PO	ii ii									PSOs		
COs	1	2	3	4	5	5	7	8	3	10	11	12	1	2	3	
CO 1	3	3	2				-17=						2	2	_	
CO 1	3	3	2	-									2	2		
	3	2	2	-			-		-	1			3	3		
CO 3	10			-	-		-	-	-			-	2	1		
CO 4	3	2	2				-								-	
CO 5	3	2	1		1.2.5		-						2	2		
	3	Hig	h			2	Me	dium				1	Low			

	Formative assessment			
Bloom's Level	Assessment Component	Marks	Total marks	
Remember	Online Quiz	5	_	
Understand	Tutorial Cless / Assignment	5	15	
	Attendance	5		

Summative Assessment					
	Internal Assessment Examinations				
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)	
Remember.					
Understand	10	10	10	20	
Apply	10	10	10	20	
Analyza	30	30	30	60	
Evaluate					
Creata					

Passed in Board of studios Meeting on 30 06:2021 Approved in Academic Council Meeting on 04 10:2021

CHAIRMAN - BOARD OF STUDIES