M.E. Aeronautical Engineering

Curriculum & syllabus R 2020

(Autonomous)

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai Accredited by NBA and NAAC with "A+"and Recognized by UGC (2f&12B)

KOMARAPALAYAM – 637303

www.excelinstitutions.com

EXCEL ENGINEERING COLLEGE

(Autonomous)
Approved by AICTE, New Delhi & Affillated to Anna University, Chennai
Accredited by NBA, NAAC with "A" and Recognised by UGC (2f &12B)
KOMARAPALAYAM – 637303

DEPARTMENT OF AERONAUTICAL ENGINEERING M.E. AERONAUTICAL ENGINEERING **REGULATION 2020**

CHOICE BASED CREDIT SYSTEM I TO IV SEMESTERS CURRICULAM

		1 - SEMES	TER						
Code No.	Course	C	Perio	ds / W	leek	Credits	Maxi	Vlarks	
Code No.	Course	Category	4	Т	Р	CI CUIES	CA	FE	Total
Theory Cou	rse(s)			- 1/					
20PMA101	Advanced Mathematica! Methods	FC	3	2	0	4	40	60	100
20PAR101	Advanced Propulsion System	PG	3	0	0	3	40	60	100
20PAR102	Theory of Vibrations	PC	3	£	0	3	49	60	100
20PAREXX	Professional Elective I	PE	3	0	0	3	40	60	100
Theory with	Practical Course(s)					V-			
20PAR 103	Advanced Aerodynamics	PC	3	0	2	4	53	50	100
20PAR104	Advanced Structural Mechanics	PC .	3	0	2	4	50	5C	100
Employabil	lty Enhancement Course								
20PAR105	Technical Presentation Seminar	MC	0	٥	2	1	100	0	100
	TOTAL		18	2	6	22	360	340	700

		II- SEME	STER						
Code Na	Carren		Perio	ods / \	Week	Cardina	Maxi	mum M.	arks
Code No.	Course	Category	L	T	Ρ	Credits	CA	FE	Total
Theory Cou	rse(s)								
20PAR201	Advanced UAV Design	-C	3	a	0	3	40	60	100
20PAR202	Aircraft Flight Dynamics	PC	3	D	0	3	40	60	100
20PAREXX	Professional Elective – II	PE	3	U	0	3	40	60	100
20PAREXX	Professional Elective - III	PE	3	0	0	3	40	60	100
Theory with	Practical Course(s)								
20PAR203	Finite Element Method for Aircraft structure Design	PG	3	0	2	4	50	50	100
20PAR204	Computational Fluid Dynamics for Aerodynamics	PC	3	0	2	4	50	50	100
Employabili	ty Enhancement Course			0			- 2		
20PAR205	Technical Presentation Seminar	МC	0	0	2	1	100	С	100
	Total		18	Q	6	21	360	340	700

Code No.	Course	Category	F	erlod Wael		Credits	Max	ximum	Marks
-000110.			L	T,	Р	Vieuto	CA	FE	Total
	1 - SEME	STER (Elec	ctive-	1)					
70PARE01	Boundary Layer Theory	PE	3	Q	0	3	40	60	100
ZÓPARE02	Aircraft Design	PE	3	0	0	3	40	60	100
20PARE03	Theory of Elasticity	PE	3	0	0	3	40	60	100
20PARE04	Rocketry and Space Mechanics	PE	3	0	0	3	40	60	100
20PARE05	Experimental Stress Analysis	PE	3	0	0	3	40	60	100
	II- SEMES	TER (Electi	ive-II	& (II)				- 10	-
20PARE11	Theory of Plates and Shells	PE	3	0	0	3	4C	60	100
20PARE12	High Temperature Problems in Structures	PE	3	0	0	3	40	60	100
20PARE13	Fatigue and Fracture Mechanics	PE	3	0	0	3	40	60	100
20PARE14	Industrial Aerodynamics	PE	3	a	0	3	40	60	100
20PARE15	HyperSuriid Aerodynamics	PE	3	0	0	3	40	60	100
20PARE16	Computational Heat Transfer	PE	2	0	0	3	40	60	100
20PARE17	Wind Power Engineering	PE	2	D	0	3	40	60	100
	III- SEMES	TER (Elect	ive-l'v	(& V)	77				
70PARE21	Aero Elasticity	PE	3	0	0	J	40	60	100
20PARE22	Design and Analysis of Turbornachines	PE	3	0	C	3	40	60	100
ROPARE23	Helicopter Aerodynamics	PE	3	0	0	3	40	60	100
20PARE24	Experimental Aerodynamics	PE	3	0	0	3	40	60	100
20PARE25	High Temperature Cas Dynamics	PΕ	3	0	0	3	40	60	100
20PARE26	High Speed Jet Flows	PE	3	0	0	- 3	40	60	160
20PARE27	Combustion in Jet and Rocket Engines	PE	3	0	0	3	40	60	100
20PARE28	Propeller Asrodynamics	PE	3	0	0	3	40	60	100
OPARE29	Aircraft Guidance and Control	PE	3	0	0	3	40	60	100
POPARE30	Avionics	PE	3	0	0	3	40	60	100
OPARE31	Wind Tunnol Techniques	РE	3	0	0	3	40	60	100

		III- ŞEMES	STER						
Code No.	Course	Calegory	F	eriod Weel		Credits	Maxi	mum M	arks
			L	T	Þ		CA	FE	Total
Theory Cour	se(s)			ii 5				W - 50	-
20PEE301	Research Methodology and Intellectual Property Rights	PC	3	ŋ	0	3	40	60	100
20PAREXX	Professional Elective –IV	PE	3	D	0	3	40	80	100
20PAREXX	Professional Elective V	PE	3	0	O.	3	40	BD-	100
Employabilit	y Enhancement Course								
20PAR301	Project Phase – I	EEC	0	0	12	€	50	50	100
Mandatory C	ourse	•							
20PAR302	Internship Training	MC	:	2 Wee	eks	0	100	0	100
	Total		В	0	12	15	230	170	400

		IV- SEMES	STER							
Code No.	Course	Category	F	verioo Wee		Credits	Maximum (Marks	
			L	T	P				Total	
mployability	y Enhancement Course	****								
20PAR401	Project Phase – II	EEC	0	0	24	12	50	50	100	
	Total		Ģ	0	24	12	50	5 0	100	

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE = 70

CREDITS SUMMARY

e blo	Colorea	CREC	ITS PER	SEMES	TER	Total Credit	Condito In R
S. No	Category	1	11	II)	IV	(AICTE)	Credits In %
1	FC	4				4	6
2	PC	14	14	3		31	44
3	PE	3	6	6		15	21
4	MC			0		0	0
5	EEC	1		6	12	20	29
	Total	22	21	15	12	70	100

FC - Foundation Course

PC - Professional Core

PE - Professional Electives

EEC - Employability Enhancement Courses

MC - Mandatory Courses (Non-Credit Courses)

CA - Continuous Assessment

FE - Final Examination

OACHIAIDA	A.J	L	T	P	Ç
20PMA101	Advanced Mathematical Methods	3	2	D	4
Nature of Course	Foundation Course				
Pre requisites	Aircraft structures ,Propulsion, Avionics				

The course is intended to

- The main objective of this course is to provide the student with a repertoire of mathematical methods that are essential to the solution of advanced problems encountered in the fields of applied physics and engineering.
- This course covers a broad spectrum of mathematical techniques such as Laplace Transform, Fourier Transform, Calculus of Vanations, Conformal Mapping and Tensor Analysis.
- 3. Application of these topics to the solution of problems in physics and engineering is stressed.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Application of Laplace and Fourier transforms to initial value, initial-boundary value and boundary value problems in Partial Differential Equations	Apply
002	Maximizing and minimizing the functional that occur in various branches of Engineering Disciplines	Apply
003	Construct conformal mappings between various domains and use of conformal mapping in studying problems in physics and engineering particularly to fluid flow and heat flow problems.	Аџрју
CO4	Understand tensor algebra and its applications in applied sciences and engineering and develops ability to solve mathematical problems involving tensors.	Apply
CQ5	Competently use tensor analysis as a tool in the field of applied sciences and related fields.	Apply

Course contents:

UNIT I Laplace Transform Techniques For Partial Differential Equations

12

Laplace transform: Definitions — Properties — Transform error function — Bessels function - Dirac delta function — Unit step functions — Convolution theorem — Inverse Laplace transform: Complex inversion formula — Solutions to partial differential equations: Heat equation — Wave equation.

UNIT II Fourier Transform Techniques For Partial Differential Equations

12

Fourier transform: Definitions — Properties — Transform of elementary functions — Dirac delta function — Convolution theorem — Parseval's identity - Solutions to partial differential equations: Heat equation — Wave equation — Laplace and Poisson's equations.

UNIT III Calculus of Variations

12

Concept of variation and its properties – Euler's equation – Functional dependant on first and higher order derivatives – Functionals dependant on functions of several independent variables – Variational problems with moving boundaries – Isopenmetric problems – Direct methods – Ritz and Kantorovich methods

UNIT IV Conformal Mapping and Applications

Introduction to conformal mappings and bilinear transformations – Schwarz Christoffel transformation – Transformation of boundaries in parametric form – Physical applications: Fluid flow and heat flow problems.

UNIT V Tensor Analysis

12

12

Summation convention – Contravariant and covariant vectors – Contraction of tensors \sim $|_{0.06}$ r product \sim Quotient law \sim Metric tensor \sim Christoffel symbols \sim Covariant differentiation \sim Gradient-Divergence and curi.

Total: 60 Periods

References

- Andrews L.C. and Shivamoggi, B., "Integral Transforms for Engineers", Prentice Hallof India Pvt. Ltd., New Delhi, 2003.
- 2. Elsgold, L.D., "Calculus of Variations", Dover Publications Inc., New York, 2007.
- 3 Mathews, J. H., and Howell, R.W., "Complex Analysis for Mathematics and Engineering". 5th Edition, Jones and Bartlett Publishers, 2006.
- Kay, O. C. "Tensor Calculus", Schaum's Outline Series, Tata McGraw Hill Edition, 2014.
- Naveen Kurner, 'An Elementary Course on Variational Problems in Calculus." Narosa Publishing House, 2095.
- Saff, F,B and Snider, A D, "Fundamentals of Complex Analysis with Applications in Engineering, Science and Mathematics", 3rd Edition. Pearson Education, New Delhi 2014.

W .	apping	of Co)ursė	Outco	mes (ith Pr comes			comes	(PO) I	Progra	m Specific
COs	POs										PS0s		
CUS	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	2	3	1	1	32	2	-	-	12	12	2	
CO2	3	-	3	3	3		**	-	*	- 51	-7-	2	
CO3	3	-	3	3	1		2	-	25	-		2	
CO4	3		3	3	2			-	5.	-	-	4	
COS	3	-	3	3	3	38	-	-		-		1	
	3	H	ligh			- 2					2	W.	ledium

	Formative assessment		
3loom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	1.
Understand	Tutorial Class / Assignment	5	15
	Altendance	5	

20PAR101	Advanced Propulsion System	L	T	þ	Ç
		3	0	0	3
Nature of Course	Professional Core				
Pre requisites	Aircraft Propulsion		-		-

The course is intended to

- To impart knowledge to students about fundamental principles of aircraft hypersonic and rocket propulsion.
- To be able to describe the principal design parameters and constraints that set the performance of gas turbine engines and performance parameters.
- Understanding the workings of multistage compressor or turbine, and to be able to use velocity triangles and the Euler Turbine Equation to estimate the performance of a compressor or turbine stage
- To impart, make students understand applications of Propeller Theory.
- To be able to be familiar with electric nuclear and solar snace propulsion methods.

Course Outcomes

On successful completion of the course, students will be able

CO. No.	Course Outcome	Bloom'sLeve
CO1	To able to analyze the overall performance of propulsive systems	Apply
COS	To explain the design parameters and constraints for Propellar	Apply
003	To recognize the working and performance characteristics of Engine Components	Арглу
G04	To explain the design parameters and constraints for Compressor	Apply
CQ5	To familiar with efectric nuclear and solar space propulsion methods,	Understand

Course contents:

UNIT I Elements of Aircraft Propulsion

9

Classification of power plants - Methods of aircraft propulsion - Propulsive efficiency - Specific fuelconsumption - Thrust and power- Factors affecting thrust and power- Illustration of working of Gasturbina engine - Characteristics of turboprop, limbefan and turbojet. Ram jet, Scram jet - Methodsof Thrust augmentation.

UNIT II Propeller Theory

q

Momentum theory, Blade element theory, combined blade element and momentum theory, propeller power losses, propeller performance parameters, prediction of static thrust- and in flight, negative thrust, prop fans, ducted propellers, propeller noise, propeller selection, propeller charts.

	Sumn	native Assessn	ient			
	Internal A	ssessment Exa	minations			
Bloom's Category	IAE -1 (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)		
Remember	10	10	10	20		
Understand	10	10	10	20		
Appty	30	30	30	60		
Analyze						
Evaluate						
Create						

get

UNIT III Inlets, Nozzles and Combustion Chamber.

Subsonic and supersonic inlets – Relation between minimum area ratio and external decoleration ratio – Starting problem in supersonic inlets – Modes of inlet operation, jet nozzle – Efficiencies – Over expanded, under and optimum expansion in nozzles – Thrust reversal. Classification of Combustion chambers - Combustion chamber performance – Flame tube cooling – Flame stabilization.

UNIT IV Axial Flow Compressors, Fans and Turbines

9

Introduction to centrifugal compressors- Axial flow compressor- geometry- twin spools- three spools- stage analysis- velocity polygons- degree of reaction – radial equilibrium theory-performance maps- axial flow turbines- geometry- velocity polygons- stage analysis-performance maps- thornal limit of blades and varies.

UNIT V Rocket and Electric Propulsion

9

Infloduction to recket propulsion – Reaction principle – Thrust equation – Classification of reckets based on propellants used – solid, liquid and hybrid – Comparison of these engines with special reference to recket performance – electric propulsion – classification- electro thermal – electrol statio – electromagnetic thrusters- geometries of for thrusters- beam/plume characteristics – half thrusters.

Total: 45 Periods

Text books

- Hill, P.G. & Peterson, C.R. 'Mechanics & Thermodynamics of Propulsion' Pearson education (2009)
- Jack Mathrigly, Elements of Gas Turbine Propulsion, Tata McGraw Hitl Education (India). Pvt Ltd,1st Edition, 2005.

References

- Coherr, H. Rogers, G.F.C. and Saravanamuttoo, F.J.H. Gas Turbine Theory, Longman, 1989.
- G.P.Sutton, 'Ranket Propulsion Elements', John Wiley & Sons Inc., New York, 5th Edition, 1986.
- Hill, P.G. and Peterson, C.R. Mechanics and Thermodynamics of Propulsion, Addison WesleyLongman Inc. 1989
- W6. Mathur, M.L., and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", StandardPublishers and Distributors, Oeth. 2014

ÇQs	Pos										PS	PSOs			
Ç Q S	1	2	3	4	5	6	7	8	9	13	13	12			
COL	1	1	2	2	14	20	-	-	2	1	2	- 43			
CO2	1	2	2	2	85	-:	-		2		2			-	
соз	2	3	2	2	-	-			2		2		· ·		
CO4	1	2	2	2	-	- 2	-	17.2	2	-	2	12	-		
CO5	1	2	2	2	-	+:			2		2	-		-	

	Formative assessment		
loom's Level	Assessment Component	Marks	Total marks
	Online Quiz	5	
	Tutorial Class / Assignment	5	15
	Attendance	5	

	Sumn	native Assessn	ent			
	Internal A	ssessment Exa	minations			
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	JAE – III (10)	Final Examination (60)		
Remember	10	10	10	20		
Understand	10	10	10	20		
Apply	30	30	30	60		
Analyze		-				
Evaluate						
Create						

port

20PAR102	Theory of Vibrations	L	T	Р	C				
		3	0	0	3				
Nature of Course	Professional core								
Pre requisites	Mechanics of machines, aero elasticity vibrations	, Basic of mechan	nical						

The course is intended to

- 1 To study the effect of time dependent forces on mechanical systems and to get the natural characteristics of system with more degree of freedom systems.
- To study the sero elastic effects of aircraft wing.
- students will learn the dynamic behavior of different aircraft components and the interaction, among the aerodynamic, elastic and inertia forces.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom'sLevel
CO1	Explain about the free, forced, damped, undamped and vibrationmeasuring instrument.	Apply
CO2	Calculate natural frequency for two Degrees and Multi degrees of Freedom Systems.	Apply
CO3	Measure the frequency of a continuous system.	Apply
CO4	Estimate the natural frequency of a system using approximate methods.	Appty
COS	Identify the effects of vibrations on aircraft structures and the change in aerodynamic property of the structures	Undersland

Course contents:

UNIT I Single Degree of Freedom Systems

10

Simple harmonic motion, definition of terminologies. Newton's Laws, DiAlemberts principle. Energy methods. Free and forced vibrations with and without damping, base excitation, and vibration measuring instruments.

UNIT II Multi-Degrees of Freedom Systems

44

Two degrees of freedom systems. Static and dynamic couplings, eigen values, eigen vectors and orthogonality conditions of eigen vectors. Vibration absorber, Principal coordinates, Principal modes. Hamilton's Principle, Lagrange's equation and its applications.

UNIT III Vibration of Elastic Bodies

10

Transverse vibrations of strings, Longitudinal Lateral and Torsiona vibrations Approximate methods for calculating natural frequencies.

UNIT IV Eigen Value Problems & Dynamic Response of Large Systems

8

Eigen Value extraction methods – Subspace hydration method, Lanczos method – Eigen value reduction method – Dynamic response of large systems – Implicit and explicit methods

UNIT V Elements of Aeroelasticity

5

Aeroelastic problems – Collar's triangle of lorces – Wing divergence – Aitoron control reversa) – Ftutter.

Total: 45 Periods

References

- F.S. Tse., I.F. Morse and R.T. Hinkle, "Mechanical Vibrations", Prentice-Hall of India, 2008.
- Fung, Y.C., "An Introduction to the Theory of Aeroelasticity", John Wiley & Sons Inc., New York, 2005.
- Kenneth G. McConnell, Paulo S. Varoto Vibration Testing: Theory and Practice 2nd Edition, 2008
- 4. Melrovitch, L. "Elements of Vibration Analysis", McGraw-Hill Inc., 2006.
- Rao, J.S. and Gupta, K. "Theory and Practice of Mechanical Vibrations", Wiley Eastern Ltd., New Delhi, 1999.
- Thomson W.T., Marie Dillon Dahleh, "Theory of Vibrations with Applications". Prentice Hall., 1997.
- 7. Timoshenko, S. 'V bration Problems in Engineering', John Wiley & Sons, Inc., 1987.

COs	Роб												PSO ₅	
209	1	2	3	4	5	6	7	8	9	10	11	12		
201	3	1	1		-	2	1	-1	+	-	1	2		
002	3		1	1	-	2	1	1	2	-	1	2		
003	3		1	1	-	2	1	2			1	2		
CØ4	2	-	1	1	1	2	1	1	-	-	1	1		
005	1			1	1	2	1	2	23	-	1	1		

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remainber	Online Quiz	5	
Understand	Tutorial Class / Assignment	S	15
	Attendance	5	

	Summa	live Assessmer	nt			
	Internal A	ssessment Exa	minations			
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	JAE - III (10)	Final Examination (60)		
Romember	10	10	10	20		
Undersland	10	10	10	20		
Apply	30	30	30	60		
Analyze						
Evaluate						
Create						

20PAR103	Advanced Aerodynamics	L	T	P	¢
Zurantios	Advanced Aerodynamics	3 0 2 4			
Nature of Course	Professional core				
Pre requisites	Fluid mechanics and characteristics, boundary layer Elements of aeronautics	r concept,			

The course is intended to

- To introduce the students the fundamental concepts and topic related to aerodynamics of flight vehicles like fundamental forms of flow, aerodynamic coefficient, incompressible and compressible flow theories, viscous flow measurements and various configuration of aircraft and wings.
- Students will understand the behaviour of airflow over booles with particular emphasis on airfoil sections in the incompressible flow regime.
- 3 Upon completion of the course, students will be in a position to use wind tunnel for pressure and force measurements on various models.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Rephrase the concepts of low speed elementary flows and their combinations by framing the fundamental governing equations.	Аррту
CO2	Illustrate two-dimensional invisced incompressible flow and voitex flow and predict the directation around the aerodynamic bodies	Арріу
Ç03	Infor the theory of airfoil and its characteristics along with the potential functions and transformations.	Apply
004	Determine the aerodynamic forces and moments and their coefficients as well as center of pressure using subsonic wing theory.	Apply
CO5	Experiment with the zones of boundary layer and determine the total drag and its coefficient for flow around the body.	Apply

Course contents:

UNIT I Introduction to Aerodynamics

9

Hollair balloon and aircrafts. Various types of similanes, Wings and airfoils, lift and Drag, Centre of pressure and aerodynamic centre. Coefficient of pressure, moment coefficient. Continuity and Momentum equations, Point source and sink doublet. Free and Forced Vortex, Uniform parallel flow, combination of basic flows, Pressure and Velocity distributions on bodies with and without circulation in ideal and real fluid flows, Magnus effect.

UNIT II Incompressible Flow Theory

•

Conformal Transformation: Kutla condition, Karman – Trefftz profiles, Thin aerofoil Theory and its applications. Vorlex line: Horse shoc vortex, Biot - Savart law, lifting line theory

UNIT III Compressible Flow Theory

Compressibility, Isentropic flow through nozzles, shocks and expansion waves, Rayleigh and Flanno Flow. Potential equation for compressible flow, small perturbation theory, Prandill- Glauert Rule, Linearlised supersonic flow, Method of characteristics

UNIT IV Airfolls, Wings and Airplane Configuration in High Speed Flows

Critical Mach number. Drag divergence Mach number, Shock stall, super critical airfolls, Transonic area rule. Swept wings (ASW and FSW), supersonic airfolls, wave drag, delta wings, Design considerations for supersonic airplanes

UNIT V Viscous Flow and Flow Measurements

Basics of viscous flow theory - Boundary Layer - Displacement, momentum and Energy Thickness - Laminar and Turbulent boundary layers - Boundary layer over flat plate - Blasius Solution Introduction to wind tunnel. Types of wind turinel, Scale model, Important testing parameters, Calibration of test section, Measurement of force, moment and pressure, scale effect, Flow visualization techniques.

Total: 45 Periods

Practical

List of experiments

- Catibration of subsonic wind tunnet.
- 2. Pressure distribution over a smooth and rough cylinder.
- Pressure distribution over a symmetric aerofolisection.
- Pressure distribution over a cambered perofoil section.
- 5 Force and moment measurements using wind tunnel balance.
- Pressure distribution over a wing of symmetric aerofoil section.
- Pressure distribution over a wing of cambered aerofoil section.
- 8 Flow visualization studies in incompressible flows.
- Calibration of supersonia wind tunner
- Supersonic flow visualization studies.

Total: 30 Periods

References

- F.J. Houghton and N.B. Caruthers, Aerodynamics for Engineering Students. Edward. Arrold Publishers Ltd., London (First Indian Edition), 1988.
- J.D. Anderson, "Fundamentals of Aerodynamics", McGraw-Hill Book Co., New York, 1985.
- Rathakrishnan F., Gas Dynamics, Prentice Hall of India, 1995.
- 4 Shapiro, A.H., Dynamics & Thermodynamics of Compressible Fluid Flow, Ronald Press, 1982.
- 5. W.H. Rae and A. Pope, "Low speed Wind Tunnel Testing", John Wiley Publications, 1984.
- Zucrow, M.J., and Anderson, J.D., Elements of gas dynamics McGraw Hill Book Co., New York, 1989.

۰۵-		POs											
COs	1	2	3	4	5	6	7	B	9	10	11	12	
CO1	3	2	3	1	1		(4)	-	100	-	-	2	
ÇQ2	3	2	3	3	3	2		-	-		-	2	
CO3	3	2	3	3	1		-	*:	-		-	2	
CO4	3	3	3	3	2	2			-	241	-	1	
CO5	3	2	3	3	3	3	-	1	2	-	-	1	
	3	H	ligh			2	Medic	ורינ			1	Lo	w

Formative assessment									
Sloom's Level	Assessment Component	Marks	Total marks						
Remember	Online Quiz	5							
Understand	Tutorial Class / Assignment	5	15						
	Attendance	5							

		Sumi	mative Asses	smen1							
7		Continuous Assessment									
Bloom's Level		Th	Practical's	Final Examination							
	FAE - 1 (7.5)	1AE - 11 (7.5)	IAE – III (10)	Attendance (5)	Rubric based CIA (20)	(Theory) (50)					
Remember	30	20	10		20	40					
Understand	10	20	30		20	40					
Арріу	10	10	10		10	20					
Analyze											
Evaluate											
Create											

don

20PAR104	Advanced Structural Mechanics	L	T	Ρ	C
Nature of Course		3	O	2	4
Nature of Course Professional core					
Pre requisites	Strength of materials, Aircraft structures				

The course is intended to

- To make students learn important technical aspects on theory of bending, shear flow in open and closed sections, stability problems in structures with various modes of loading and also impart knowledge on how to analyze aircraft structural components under various forms of loading.
- Students will get knowledge on different types of beams and columns subjected to Various
 types of loading and support conditions with particular emphasis on aircraft structural
 components.
- to impart practical knowledge to the students on calibration of photoelastic materials
 determination of elastic constant for composite lamina, unsymmetrical bending of beams,
 determination of shear centre locations for closed and open sections and experimental
 studies.
- 4. Upon completion of the course, students will acquire experimental knowledge on the unsymmetrical bending of beams, finding the location of shear centre, obtaining the stresses in circular discs and beams using photoelastic techniques, calibration of photo— clastic materials.

Course outcomes:

On successful completion of the course, students will be able to

ÇQ. No.	Course Outcome	Bloom's Level
001	Estimate the response of statically determinate and indicterminate structures under various loading conditions.	Apply
CO2	Apply the knowledge in strain energy methods to calculate the reactions of various structures	Арріу
003	Analyze the column using appropriate methods.	Apply
CO4	Design the structure using different theories of failure.	Apply
COS	Examine the structural effect due to induced stresses.	Apply

Course contents:

UNIT I Bending of Beams

ç

Elementary theory of bending – Introduction to semi-monocogue structures - Stresses in beams of symmetrical and unsymmetrical sections -Box beams — General formula for bending stresses-principal axes method – Neutral axis method.

UNIT II Shear Flow In Open Sections

9

Shear stresses in beams -- Shear flow in attiffened panels - Shear flow in thin walled open tubes. Shear centre -- Shear flow in open sections with stiffeners.

UNIT III Shear Flow in Closed Sections

Shear flow in closed sections with stiffeners— Angle of twist - Shear flow in two flange and threeflange box beams - Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory - Torsional shear flow in multi-cell tubes - Flexural shear flow in multi-cell stiffened structures.

UNIT IV Stability Problems

a

Stability problems of thin walled structures—Buckling of sheets under compression, shear, bending and combined loads - Crippling stresses by Needham's and Gerard's methods Sheet stiffener panels-Effective width, Interrivet and sheet wrinkling fallures-Tension field web beams (Wagner's).

UNIT V Analysis of Aircraft Structural Components

Я

Loads on Wings – Schrenk's curve - Shear force, bending moment and torque distribution along the span of the Wing. Loads on fuselage - Shear and bending moment distribution along the length of the fuselage. Analysis of rings and frames.

Total: 45 Periods

Practical.

List of experiments

- Constant strength Beams
- 2 Buckling of columns
- 3 Unsymmetrical Bending of Beams
- 4 Shear Centre Location for Open Section
- Shear Centre Location for Closed Section.
- 6 Flexibility Matrix for Cantilever Beam
- Combined Loading
- 8. Calibration of Photo Elastic Materials.
- 9. Stresses in Circular Dish Under Diametrical Compression Photo Elastic Method
- 10. Vibration of Beams with Different Support Conditions.
- Fabrication and Determination of elastic constants of a composite laminate.
- 12. Wägner bearn.

Total: 30 Periods

References

- E.F. Brohn, "Analysis and Design of Flight Vehicle Structures". Tristate Offset Co., 1980.
- Meyson, T.M.G; Aircraft Structures for Engineering Students, Edward Amold, 1995.
- Feery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993.
- Rivello, R.M., Theory and Analysis of Flight structures, NaGraw-Hill, N.Y., 1993.
- Stephen P. Timnoshenko & S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition. McGraw-Hill, Singapore, 1990.

						Dutco							Specifi	
Ç0s	POs							PSO	PSO _S					
ÇQŞ	1	2	3	4	5	6	7	8	9	10	11	12		I
Ç01	3	2	- 3	1	1	-			*			2		1
CQ2	3	3	3	3	3	-	-	-	20	1/4	-	2		Ī
CO3	3	2	3	3	1	*:			*	-	-	2		
CO4	3	2	3	3	2	4	-			-	-	1		Ī
CO5	3	3	3	3	3	-	-					1		Ī
	3	1	High			2		Ме	dium		1	Lo	w	Ť

Formative assessment									
Bloom's Level	Assessment Component	Marks	Total marks						
Remeniber	Online Quiz	- 5							
Understand	Tutonal Class / Assignment	5	15						
	Attendance	5							

		Sum	mative Asses	sment		
		Final				
Bloom's Level		Th	Practical's	Examination		
	IAE - 1 (7.5)	IAE - D (7.5)	IAE - III (10)	Attendance (5)	Rubric based CIA (20)	(Theory) (50)
Remember	30	50	10		20	40
Understand	10	20	30		20	40
Арріу	10	10	10		10	20
Analyze	<u>.</u>					
Evaluate						
Create						

20PAR105	Technical Presentation Seminar	L	T	P	С				
	0 0 2								
Nature of Course	Mandatory courses								
Pre requisites	Undergraduate Project Presentation								

The course is intended to

- To encourage the students to study advanced engineering developments.
- To prepare and present technical reports.
- To encourage the students to use various feaching aids such as overhead projectors.
 PowerPoint presentation and demonstration models.

Course outcomes:

On successful completion of the course, students will be able to

Course Outcome	Bloom'sLevel
To rowew, prepare and present technological developments	Understand
To face the placement interviews	Understand
To improve the speaking skills	Understand
To develop your confidence in handling information, making useful notes, and presenting an argument	Uniterstand
To improve the research and development Knowledge	Understand
	To rowew, prepare and present technological developments To face the placement interviews To improve the speaking skills To develop your confidence in handling information, making useful notes, and presenting an argument

Course contents:

During the seminar session each student is expected to prepare and present a topic or engineering/ technology, for a given time limit. In a session /period student are expected to present the seminar. Each student is expected to present at least twice during the semester and the student is evaluated based on Rubnius. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also. Evaluation is 100% internal.

Total: 30 Periods

CÓs						PC	36							PSO:	3
505	1	2	3	4	5	6	7	В	9	10	11	12	1	2	3
CO1	(a)	-	-			3	2	3	2	3	2	2		-	
CO2		-	-	-	-	1	1	3	3	3	2	2		-	-
CO3	-	-	-	-	-	3	1	2	2	2	3	3	-		
CO4	-	23	-	-	-	2	2	3	3	2	3	2	(2)		
CO5	-	23	-	-		3	1	3	2	2	3	3		1	
	3		High			-	1	2	Medi	um		1	L	ow	

Assessment based on Continuous and Final Examination								
Bloom's Level	Continuous Assessm (Attendance - 5		Final Examination					
	Rubric based Continuous Assessment [25 marks]	Model Examination (20 marks)	[50 marks]					
Remember								
Understand	40	40	40					
Apply.	50	60	60					
Analyze								
Evaluate			Y					
Create			VI CONTRACTOR OF THE PROPERTY					

20PAR201	Advanced HAY Desires	L	T	P	C		
an radoi	Advanced UAV Design 3 0						
Nature of Course	Professional core						
Pre requisites	Aircraft structures ,propulsion, avionics						

The course is intended to

- 1. To introduce and develop basic concept of UAV design.
- 2. At the end of this course, the student should be able to understand and apply the various concepts related to UAV design.
- The student should be able to design various structural components of the UAV.
- 4. The course enables students to understand and develop UAV avionics system.
- To students familiar the various level UAV airworthingss.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
co.	Explore in various stages of UAV design	Apply
CO2	Design and development of JAV structural design	Apply
CO2	Expose in various UAV propulsion system	Apply
GC4	Identify and apply various avionics system	Apply
COS	Familiar various UAV airworthness systems	Apply

Course contents:

UNIT I introduction to fixed-wing UAVs

The Stages of Design, Concept Design, Proliminary Design, Detail Design, Manufacturing Design, In-service Design and Decommissioning, the Morphology of a UAV, Main Design Drivers.

UNIT II UAV Structural Design

Wings parts design, Fuselages and Tails design. Undercarriages design, Protinilnary Structural. Analysis:

UNIT III Propulsion System

IC Engines Electric Motors, Propellers, Engine/Motor Control, Fuel Systems, Batteries and Generators:

UNIT IV Airframe Avionics and Systems

Pomary Control Transmitter and Receivers, Avionics Power Supplies, Servos, Wining, Buses, and Boards, Autopilots, Payload Communications Systems, Anciltaries, Resilionce and Redundancy

UNITY Airworthiness UAVs

Airworthness, Failure analysis, Systems Engineering, Geometry/CAD Codes, Operational Simulation and Mission Planning, Accodynamic and Structural Analysis Codes, Design and DecisionViewing, Supporting Databases.

Total: 45 Periods

Textbooks

- Andrew J.Keane, Andras sobester, James P.Scanlan., Small Unmanned Fixed-wing Arcraft. Design a practical approach! John Wiley & Sons Ltd., 2017.
- Richard K. Bamhart, Stephen B. Hottman, Oouglas M. Marshall , Eric Shappee, "Introduction, To Unmanned Aircraft Systems", CRC Press, 2012

Reference

- Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy", Springer, 2007
- 2 Faul G Fahlstrom, Thomas J Gleason, "Introduction to UAV Systems", UAV Systems, Inc., 1998.
- 3. Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin. Aeronautics Company, 2003.

Web references

- https://pitellac.in/courses/101/104/1011/04073/.
- https://www.isro.gov.in/applications-of-unmanned-aerial-vehicle-uav-based-remotesensing-ne-region

	_						ės (PS						
ÇQs	PÔs												PSOs
ÇQ3	1	2	3	4	5	ô	7	8	9	10	11	.5	
CO1	3		3	1	1							2	
CO2	3		3	3	3		+	*	-			2	
CO3	3	*	3	3	1		2	-	-	-	-	2	
CO4	3		3	2	2						-	1	
cos	3		3	3	3	+		-			-	1	
	3	ŀ	tigh			2	Medi.	ודיו		-	1	Lo	w

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Summ	native Assessm	ent		
	Internal A	ssessment Exa			
Bloom's Category	1AE - I (7.5)	IAE - ((7.5)	IAE - III (10)	Final Examination (60	
Remember	10	10	10	20	
Understand	10	10	10	20	
Apply	30	30	30	60	
Analyze					
Evaluat e					
Create			/		

20PAR202	Aircraft Flight Dynamics	L	Т	P	C
20171242		3	Q	0	3
Nature of Course	Professional core			1/	
Pre requisites	Basic of Aircraft Power Plants, Elements of aircrafts				

The course is intended to

- To impart knowledge to students on aircraft performance in level, climbing, gliding.
- 2 To impart knowledge about accelerated flight modes and also various aspects of stability and control in longitudinal, lateral and directional modes.
- 3 Students will understand the static, dynamic longitudinal, directional and lateral stability and control of airplane effect of maneuvers.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Evaluate the performance characteristics like aerodynamic forces and power variations of aircraft	Evaluate
CO2	Interpret the range, undurance, climping, gliding and various maneuvering performances of an aircraft along with load factor and its limitations.	Analyze
CO3	Illustrate the degrees of freedom and static longitudinal stability attained in aircraft.	Apply
CO4	Correlate the aircraft's lateral and directional stability.	Apply
005	Determine the response of aircraft in various oscillatory modes of aircraft stability	Apply

Course contents:

UNIT (Principles of Flight

q

Physical properties and structure of the atmosphere, International Standard Atmosphere, Temperature, pressure and altitude relationship, Measurement of speed — True, Indicated and Equivalent air speed, Streamlined and bluff bodies, Various Types of drag in airplanes, Grag polar, Methods of crag reduction of airplanes.

UNIT II Aircraft Performance in Level, Climbing and Gliding Flights

3

Straight and level flight. Thrust required and available. Power required and available, Effect of altifude on thrust and power. Conditions for minimum drag and minimum power required. Gliding and Climbing flight, Range and Endurance.

UNIT It! Accelerated Flight

9

Take off and landing performance, turning performance, horizontal and vertical firm. Full up and pulldown, maximum turnitate. V-ii diagram with FAR regulations.

UNIT IV Longitudinal Stability and Control

10

Degrees of freedom of a system, static and dynamic stability, static longitudinal stability, Contribution of individual components, neutral point, static margin, Hinge moment, Eluvator control offectiveness, Power effects, elevator angle to trim, elevator angle per g, maneuver point, stick force gradient, aerodynamic balancing. Aircraft equations of motion, stability derivatives, stability quartic, Phugoid motion.

UNIT V Lateral, Directional Stability and Control

Yaw and side slip, Dihedral effect, contribution of various components, lateral control, different control power, strip theory, different reversal, weather cock slability, directional control, nudder requirements, dorsal fin. One engine inoperative condition. Dutch roll, spiral and directional divergence, autorotation and spin.

Total: 45 Periods

Text books

- 1. Mc Comick, W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY, 1979.
- 2. Nelson, R.C. 'Flight Stability and Automatic Control", McGraw-Hill Book Co., 2004.
- 3 Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", John Wiley & Sont, Inc., NY 1988

References

- Babister, A.W. Aircraft stability and response, Pergamon Press, 1980.
- Clancey, L.J. Aerodynamics, Pilman, 1986.
- Houghton E.L., and Caruthers, N.B., Aerodynamics for engineering students, Edward Arnuld Publishers, 1988.
- 4 Kuethe, A.M., and Chow, C.Y., Foundations of Aerodynamics, John Wiley & Sons, 1982.
- 5. McCormic, B.W., Aerodynamics, Aeronautics & Flight Mechanics John Wiley, 1995.
- Nelson, R.C. Flight Stability & Automatic Control, McGraw-Hill, 1989.
- 7. Perkins C.D., & Hage, R.E. Airplane performance, stability and control, Wiley Toppan, 1974.

						P	òś						1	PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
GQ1	3	3	2	L	-	- 2	-	-	-	-	1	-			
C02	3	3	2	2				-	+	-	2				
CO3	3	2	2	2	2	-	+	-	+	-	2	5			
CO4	3	2	2	1	2		-	10		-	2	7			
005	3	3	2	2	2				*:		2	2			Е
	3	H	High			2	Medin	т			1		ow		-

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Suma	native Assessn	rent	
	Internal A			
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)
Ramembor	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analy2é				
Evaluate				
Create				

20PAR203	Finite Element Method for Aircraft structure Design	L	T	P	C
IV. Tillieus	decides the lines of Harton of details	3	0	2	4
Nature of Course	Professional core				
Pro requisites	Basic shapes of elements, 2D, 3D, Boundary conditions				

The course is intended to

- The course is indented to make students learn using Finite element techniques to solve problems related to discrete, continuum and isoparametric elements.
- 2. Infroduce solution schemes for static, dynamic and stability problems.
- 3. students will learn the concept of numerical analysis of structural components.
- Upon completion of the course, students will be in a position to use Computational fluid dynamics software and Finite Element Analysis software for solving various perchautical problems.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom'sLavel
GO1	Apply direct stiffness, Rayleigh -Ritz, Galerkin method to solve angineering problems and outline the requirements for convergence	Romeinber
CO2	Solve linear 1D structural rod, beams and frames problems, evaluate the Eigenvalues and Eigenvectors for stepped bar and beam	Anallyse
CO3	Solve two dimensional Structural problems FEM method	Apply
CO4	Derive shape functions for 4 and 8 node quadrilateral, 6 node triangle elements and apuly numerical integration to solve; 1D and 2D; stiffnessintegrations	Evaluate
0.05	Solution schemes familianze software packages.	Apply

Course contents:

UNIT | Introduction

Review of various approximate methods — Rayleigh-Ritz, Galerkin and Finite Difference Methods - Stiffness and flexibility matrices for simple cases - Basic concepts of finite element method - Formulation of governing equations and convergence criteria.

UNIT II Discrete Elements

ļ

Structural analysis of bar and beam elements for static and dynamic loadings. Bar of varying section – Temperature effects. Program Development and use of software package for application or bar and beam elements for static dynamic and stability analysis.

UNIT III Continuum Elements

5

Plane stress, Plane strain and Axisymmutric problems – CST Element – LST Element. Consistent and lumped load vactors. Use of local co-ordinates. Numerical integration. Application to heat transfer problems. Solution for 2-D problems (static analysis and heat transfer) using software packages.

UNIT IV (soparametric Elements)

9

Definition and use of different forms of 2-D and 3-D elements. - Formulation of element stiffnessmalrix and load vector. Solution for 2-D problems (static analysis and heat transfer) using suftware packages.

UNIT V Solution Schemes

9

Different methods of solution of simultaneous equations governing static, dynamics and stability problems. General purpose Software packages,

Total: 45 Periods

Practical

List of experiments

- Fatigue analysis of aircraft landing gear using FEM Software.
- 2. Rotor dynamic analysis of jet engine compressor blade using FEM Software
- Rotor dynamic analysis of jet engine Turbine blade using FEM Suftware.
- 4. Fracture Mechanics analysis of aircraft skin structure using FEM Software.
- Random Vibration analysis of Aircraft Wing Structure.
- Weight Optimization of Aircraft fuselage frame structure using FEM Software.
- Stress Optimization of Aircraft fusciage frame structure using FEM Saftware.
- 8. Hoat transfer analysis of Turbine blade using FEM Software.
- 9. Heat transfer analysis of rocket thrust chamber using FEM Software.
- 10. Prediction of Drag and lift on typical aircraft using CFD Software
- 11. Prediction of Orag and lift typical automobile using CFD Software.
- 12. Flow simulation of propeller using CFD Software
- 13. Flow simulation of wind Turbine blade using CFD Software.
- Combustion simulation of minriet engine using CFD Software.
- Contousion simulation of pulse jet engine using CBD Software.
- Accustic study of jet engine using QFD Software.

Total: 30 Periods

Text books

- Raddy J.N., "An Introduction to Finite Element Method", McGraw Hill, Unitd edition, 2005.
- 2 Tiropathi.R Chandrapatha and Ashok D Belegundu, "Introduction to Finite Elements in Engineering", Prentice Hall India, Fourth edition, 2012

Reterences

- C.S. Krishnamurthy, "Finite Elements Analysis", Tata McGraw-Hilt, 1987.
- K.J. Bathe and E.L. Wilson, "Numerical Methods in Finite Elements Analysis", Prentice Hallof India Ltd., 1983.
- Robert D. Cook, David S. Malkus, Michael E. Plesha and Robert J. Witt "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley & Sons, 2002.
- 4 S.S.Rao, "Finite Element Method in Engineering", Butterworth, Heinemann Publishing, 3rd Edition, 1998.
- Segerlind, L.J. "Applied Finite Element Analysis", Second Edition, John Witey and Sons Inc., New York, 1984.
- Tirupathi R. Chandrupalla and Ashok D. Belegundu, Introduction to Finite Elements in Engineering, Prentice Hall, 2002

co-			PSOs										
COs	1	2	3	4	5	6	7	В	9	10	11	12	
CO1	3	3	2	-	-	*	-	-		-	1	-	
CO2	2	3	2		-	-				-	1	-	
CO3	3	3	2		-	-	-	-			1		
CO4	2	2	2	-		-				*		-	
005	3	2	3	-	-	-	-			-	1	-	
600	3		digh	-	-	2	Mediu		-	-	1		7A.V

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remomber	Online Quiz	5	
Understand	Tutorial Class / Assignment	- 5	15
	Attendance	5	

		Sum	native Assess	sment								
		Continuous Assessment										
Bloom's		Th	Practical's	Figal Examination								
Level	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	Attendance (5)	Rubric based CIA (20)	(Theory) (50)						
Remember	30	23	10		20	40						
Understand	10	23	30		20	40						
Арріу	10	10	10		10	20						
Analyze												
Eva uate												
Creato												

20PAR204	Computational Fluid Dynamics for Aerodynamics	L,	T	P	C
	3	0	2	4	
Nature of Course	Professional core				
Pre regulaites	Fluid mechanics, Aerodynamics				

The course is intended to

- 1. Familiar to use various Numerical Technique
- 2. Understand and apply the concepts of various Grid generation.
- Understand the various two and three dimensional panels technique.
- Understand the various transonic relaxation techniques.
- 5. Solve the time dependent solutions of gas dynamic problems

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Familia: in Numerical Technique	Understand
CO2	Apply the concepts of Grid generation	Арріу
CO3	Elements of two and three dimensional panels	Understand
CO4	Understand transonic relaxation techniques	Undersland
CO5	Solve time dependent problems	Apply

Course contents:

UNIT I Numerical Solutions Of Some Fluid Dynamical Problems

¢

Basic fluid dynamics equations, Equations in general orthogonal coordinate system, Rody fitted coordinate systems, Stability analysis of linear system. Finding solution or a simple gas dynamic problem, Local similar solutions of boundary layer equations, Numerical integration and shooting technique. Numerical solutions of boundary layer equations.

UNIT II Grid Generation

.

Need for grid generation – Various grid generation techniques – Algebraic, conformal and numerical grid generation – importance of grid control functions – boundary point control – orthogonality of grid lines at boundaries. Elliptic grid generation using Laplace's equations for geometries like airloit and CD nozzle.

UNIT III Panel Methods

9

Elements of two and three dimensional panels, panel singularities. Application of panel methods to incompressible, compressible, subsonic and supersonic flows. Numerical solution of flow over a cylinder using 2-D panel methods using buth vertex and source panel methods for lifting and now lifting cases respectively.

UNIT IV Transonic Relaxation Techniques

Small perturbation flows, Transonic small perturbation (TSP) equations, Central and backward difference schemes, conservation equations and shock point operator. Line relaxation techniques, Acceleration of convergence rate, Jameson's rotated difference scheme -stretching of coordinates, shock fitting techniques Flow in body fitted coordinate system.

UNIT V Time Dependent Methods

g

Stability of solution, Explicit methods, Time split methods, Approximate factorization scheme, Unsteady transposic flow around airfoils. Some time dependent solutions of gas dynamic problems. Numerical solution of unsteady 2-D heat conduction problems using SUOR method.

Total: 45 Periods

Practical.

- 1. Prediction of Grag and lift on typical aircraft using QFD Software.
- 2 Prediction of Drag and lift typical automobile using CFD Software.
- Flow simulation of probeller using CFD Software.
- 4. Heat transfer analysis of 3d Duct using CFD Software
- 5. Combustion simulation of any engine using CFD Software

Total: 30 Periods

Text books

- 3 John D. Anderson, JR" Computational Fluid Dynamics", McGraw-Hifl Book Co., Inc., New York, 1995.
- T.J. Chung, Computational Fluid Dynamics, Cambridge University Press, 2002 6, T.K.Bose, "Computation Fluid Dynamics" Wiley Eastern Ltd., 1988.

References

- A.A. Hirsch, Untroduction to Computational Fluid Dynamics", McGraw-Hill, 1989.
- 2. G Y Chow, "Introduction to Computational Fluid Dynamics", John Wiley, 1979.
- 3 H.J. Wirz and J.J. Smeldern "Numerical Methods in Fluid Dynamics", McGraw-Hill & Co., 1978.

Web References

- https://nptet.ac.in/courses/112/105/112105045/.
- https://optebac.in/nourses/112/107/112107080/.
- 3. https://optetac.in/courses/112/105/112105254/

	1						Qs									
COs														PSOs		
000	1	2	3	4	5	Б	7	R	G	10	- 1	12	1	2	3	
CO1	3	2	2	2	2	2	-	-	-	4	2	2				
COZ	3	3	2	2	2	-	-	-		-	2					
003	3	3	2	2	2		-	-		-82	2			-		
CO4	3	3	2	2	2	2		-			2	1		-		
CO5	3	3	>	2	2	-					2	-		-		

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

		Sum	mative Asses	sment			
		Cont	inuous Asses	sment		Fina)	
Bloom's		Th	ногу		Practical's	Examination	
Lavel	IAE -1 (7.5)	IAE - II (7.5)	IAE - III (10)	, Attendance (5)	Rubric based CIA (20)	(Theory) (50)	
Remember	30	20	10		20	40	
Understand	10	20	30		20	40	
Apply	10	1C	13		10	20	
Analyze							
Evaluate							
Create							

20PAR205	Technical Presentation Seminar	나	P	C
		0 0	2	1
Nature of Course	Mandatory courses			
Pre regulaites	Undergraduate Project Presentation			

The course is intended to

- 1. To encourage the students to study advanced engineering developments.
- To prepare and present technical reports.
- Fo encourage the students to use various teaching aids such as overhead projectors, PowerPoint presentation and demonstration models.

Course outcomes:

On successful completion of the course, students will be able to

Course Outcome To review, prenare and present technological developments.	
nare and present technological developments	Understand
coment interviews	Understand
speaking skills	Understand
	Understand
research and development Knowledge	Understand
1	pare and present technological developments accoment interviews a speaking skills ur confidence in handling information, making useful senting an argument a research and development Knowledge

Course contents:

During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for a given time limit. In a session /period students are expected to present the seminar. Each student is expected to present at least twice during the semester and the student is evaluated based on Rubnics. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report. A Faculty guide is to be altotted and he / she will guide and monitor the progress of the student and maintain attendance also. Evaluation is 100% internal.

Total: 30 Periods

	POs										PSO ₈				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1			-			3	2	3	2	3	2	2	-	-	
CO2	-	1-50	-	-		1	1	3	3	3	2	2		-	١.
CQ3	-			-		3	1	2	2	2	3	3	-	-	
CO4	-		23			2	2	3	3	2	3	2	-	•	
COS	-	-	,			3	1	3	2	2	3	3	-	-	1
	3		High					2	Mediu	щ	1	1	Lo	W	_

Asse	ssment based on Cont	inuous and Final Exami	nation				
		Continuous Assessment (50 marks) (Attendance – 5 marks)					
Bloom's Level	Rubric based Continuous Assessment [25 marks]	Model Examination [20 marks]	Final Examinatio [50 marks]				
Remember							
Understand	4D	40	40				
Apply	60	60	60				
Analyze							
Evaluate							
Create							

20PEE301	Research Methodology and Intellectual Property Rights	L	T	P	C
20756301	(Common to all Branches of M.E., / M.Tech., Programme)			0	3
Nature of Courso	Professional Core				
Pre requisites	Basic Research Knowledge				

- To learn the basics of research problems, effective technical writing and developing a research proposal.
- 2. To study about Nature of Intellectual Property and Patent Rights.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Lavel
CO1	Examine research problem formulation.	Apply
CO2	Analyze research related information.	Analyze
CG3	Follow research ethics.	Апріу
G04	Utilize the Patent information and databases	Apply
C05	Emphasis the need of information about Intellectual Property Right to be promoted among students in general and engineering in particular	Analyzo

Course Contents:

Unit I Basics of Research Problem

9

Total: 45 Periods

Meaning of research problem – Sources of research problem – Criteria Characteristics of a good research problem – Errors in selecting a research problem – Scope and objectives of research problem, Approaches of revestigation of southers for research problem – Data collection – Analysis – Interpretation – Necessary instrumentations

Unit II Technical Writing and Proposal

q

Effective literature studies approaches – Analysis Plagianism – Research ethics – Effective technical writing – how to write Report – Paper – Developing Research Proposal – Format of research proposal – Presentation and Assessment by a review committee

Unit III Intellectual Property

q

Nature of Intellectual Property: Patents – Designs – Trade and Copyright, Process of Patenting and Development: Technological research – Innovation – Patenting – Development, International Scenario: International occuperation on Intellectual Property – Procedure for grants of patents Patenting under PCT.

Unit IV Patent Rights

9

Patent Rights: Scope of Patent Rights – Licensing and transfer of technology – Patent information and databases – Geographical Indications

Unit V Developments in IPR

9

New Developments in IPR: Administration of Patent System – New developments in IPR – IPR of Biological Systems – Computer Software – Traditional knowledge Case Studies – IPR and IITs.

Reference

- Robert P. Mergos, Peter S. Monell, Mark A. Lomloy, "Intellectual Property in New Technological Age", 2016.
- 2. Ranjif Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners",

2014.

- 3. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008.
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- Wayne Goddard and Stuart Metville, "Research Methodology. An Introduction", Julia and Company Ltd, 2nd Edition 2004.
- Wayne Goddard and Stuart Melville "Research Methodology. An Introduction", 2004.
- Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students", 1996.
- B. Stuart Melville and Wayne Goddard, 'Research methodology; anintroduction for science & engineering students', Juta and Company Ltd, 1996.

_	POs												P\$05			
Cos	1	2	3	4	5	6	7	В	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	- 2		2	1	1	2	3	1	2	
CO2	3	3	3	3	3		2	9	2	1	1	2	3	1	2	
CO3	3	3	3	3	3		8		2	1	1	2	3	1	2	
CO4	3	3	3	3	3				2	1	1	2	3	1	2	
COS	3	3	3	3	3	-			2	1	1	2	3	1	2	
	3	3 High				2		Medium:			1	Low				

	Formative assessment		
Bloam' s Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

Summ	ative Assessme	nt	
Interna	al Assessment E	Examinations	Final Examination
IAE - 1 (7.5)	IAE - II (7.5)	IAE - III (10)	(60)
10	10	10	20
10	10	10	20
30	30	30	60
	Internation IAE - 1 (7.5) 10 10	Internal Assessment E IAE - I (7.5)	10 10 10 10 10 10

20PAR301	PROJECT WORK PHASE - I	L	Т	Р	C	
-41 11114	THOUSE THE THOUSE T	D	0	12	В	
Nature of course	Employability Enhancement Course	12-1		1		
Pre regulaites	Concepts of Research Methodology					

The course is intended to

- Identify a specific problem for the current structural needs of the society.
- 2. Collect information related to the same through detailed review of literature.
- 3. Develop the methodology to solve the identified problem.
- 4. Review the methodology and comparing its ments and demoits.
- Experimental work related to the methodology which includes hasin concepts, basic tests
 etc..

Course Outcomes

On successful completion of the course, students will be able to

CO. No	Course Outcome	Bloom's Level
CQ 1	Identify and formulate research problem	Apply
00.2	Concentrate on literatures related to research problem,	Understand
CO 3	Possess the ability to write a standard technical paper and presentation,	Apply
CO 4	Find the correct precedure for applying patents	Apply
00.5	Become well versed on patent rights, licensing and transfer of technology.	Understand

Course Contents

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a petal erfreport on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-vace examination by a panel of examiners including one externs: examiner.

Total: 180 Periods

COs		POs									PSOs				
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	3	3	3	3	3	3	3			
CO 2	3	3	3	3	3	3	3	3	3	3	3	3			
CO 3	3	3	3	3	2	3	3	3	3	3	3	3			
CO 4	3	3	3	3	3	3	3	3	3	3	3	3			
CO 5	3	3	3	3	3	3	3	3	3	3	3	3			
	3		Н	igli		2			Medi	ium		1		Low	

	b_7====	Conti	nuous Asses	ssment (50 ma	rks)		Final Viva
	Review I [10]	Review II [10]	Review III [10]	Publication [10]	Report [10 Marks]	Total [50]	Voce Examination [50 marks]
Marks	100	100	100	10	10	50	50

PROJECT WORK PHASE . II	L	T	Р	С
THOSE THOM THAT I	Û	0	24	12
Employability Enhancement Course				
Knowledge in Electronics Engineering				
		Employability Enhancement Course	Employability Enhancement Course	6 0 24 Employability Enhancement Course

The course is intended to

- Solve the identified problem based on the formulated methodology.
- 2. Develop skills to analyze the problem related to area.
- Continue the trials until the expected positive results are obtained.
- 4 Preparation of preliminary report and discussion on test results.
- 5. Arrive at conclusion and suggestion for future works.

Course Outcomes

On successful completion of the course, students will be able to

CO. No	Course Outcome	Bloom's Level
00.1	Select different software/ computational/analytical tools,	Apply
CO 2	Design and develop an experimental set up/ equipment/test rig.	Creating
CO 3	Conduct tests on existing setup with equipments and draw logical results.	Analyzing
CO 4	Conclude the results with suitable remarks and suggestion for further extension of work.	Evaluating
CO 5	Present their topic of study to the engineering community,	Apply

Course Contents

The student should continue the phase it work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report and the viva-voce examination by a panel of examiners including one external examiner.

Total: 360 Periods

	,									C	ulco	omes (l	PSOs)		
ÇQs	POs									PSOs					
U US	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	3	3	3	3	3	3	3			
CO 2	3	3	3	3	3	3	3	3	3	3	3	3			1
CO 3	3	3	3	3	3	3	3	3	3	3	3	3			
CO 4	3	3	3	3	3	3	3	3	3	3	3	3			
CO 5	3	3	3	3	3	3	3	3	3	3	3	3			
	3		Н	ligh		2		1	/edic	ım		1	L	.ow	

		Conti	luous Asses	sment (50 ma	rks]		
	Review I [10]	Review II [10]	Review III [10]	Publication [10]	Report [10 Marks]	Total [50]	Final Viva Voce Examination [50 marks]
Marks	100	100	100	.0	10	50	50

I_ SEMESTER (Election.I)

20PARE01	Boundary Layer Theory	L	T	P	С
		3	Q	0	3
Nature of Course	Professional Elective				

Course objectives:

The course is intended to

- Students will acquire knowledge on viscous fluid flow, development of boundary layer for
- 2. Students will understand the behaviour of airflow over bodies with particular emphasis on airfoil sections in the incompressible flow regime.
- 3. Upon completion of the course, students will be in a position to use wind lunnel for pressure. and force measurements on various models.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Viscous Flow Equations	Apply
CO2	Lammar Boundary Layer	Арріу
C O 3	nurbulent boundary layer	Арріу
CO4	Approximate Solution To Boundary Layer Equations	Apply
CO5	Thermal Boundary Layer	Apply

Course contents:

UNIT | Viscous Flow Equations

Navier-Stokes Equations, Creeping motion, Couette flow, Poiscuille flow through ducts, Ekmandriff.

UNIT II Laminar Boundary Layer

Development of boundary layer - Estimation of boundary layer thickness, Displacement trickness-Momentum and energy thicknesses for two dimensional flow - Two dimensional boundary tayer equations - Similarity solutions - Blasius solution.

UNIT III turbulent boundary layer

Physical and mathematical description of turbulence, two-dimensional turbulent boundary layer. equations. Velocity profiles - Inner, outer and overlap layers, Transition from laminar to turbulent brundary layers, furfulent boundary layer on a flat plate, mixing length hypothesis.

UNIT IV Approximate Solution to Boundary Layer Equations.

Approximate integral methods, digital computer solutions – Von Karman – Polhausen method,

UNIT V Thermal Boundary Layer

Introduction to thermal boundary layer – Heat transfer in boundary layer - Convective heat transfer, importance of non-dimensional numbers — Prandtlinumber, Nusself number, Lewis number etc.

- 1. A.J. Reynolds "Turbulent flows in Engineering", John Wiley & Sons, 1980.
- Frank White Viscous Fluid flow McGraw Hill, 1998.
- 3. H. Schlichling, "Boundary Layer Theory", McGraw-Hill, New York, 1979.
- 4. Ronald L., Panton, "Incompressible fluid flow", John Wiley & Sons, 1984.
- Tuncer Cobeci and Poter Bradshaw. "Momentum transfer in boundary layers", Hemisphere Publishing Corporation, 1977

						Þ	Os						1	PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ÇQ1	1	2	3	3	3	-		-		-		2			
COZ	3	2	3	1	1	*		-	*	8		2			
CO3	3	1:	3	3	3	-	4	-		~	-	2		4	
CO4	3	2	3	3	1	-				-	170	2			T
COS	3	1	3	3	2	14		-	100	(4)	(+)	1			

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Futorial Class / Assignment	5	15
	Altendance	5	

	Sumn	native Assessm	ient	
	Internal A	ssessment Exa	minations	
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Арріу	30	30	30	60
Analyze			11	
Evaluate				
Create				

CHAIRMAN AOARD OF STUDIES

20PARE02	Aircraft Design	L	T	P	C
ZOF FINEVE	William Benigh	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Flight dynamics, Aircraft Design Project				

The course is intended to

- To impair knowledge to the students on various types of power plant types and also toexpose
 them principles of aerodynamics and structural design aspects.
- To encourage the students to study advanced engineering developments.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Review of Developments in Aviation	Apply
CO2	Power Plant Types and Characteristics	Apply
CO3	Preliminary Design	Apply
CO4	Special Problems	Apply
CO5	Structural Design	Apply

Course contents:

UNIT I Review of Developments in Aviation

9

Categories and types of arrorafts – various configurations – Layouts and their relative merits – strength, stiffness, fail safe and fatigue requirements – Manoeuvening load factors – Gust and manoeuverability envelopes – Balancing and maneuvering loads on tail planes

UNIT II Power Plant Types and Characteristics

9

Characteristics of different types of power plants – Propoller characteristics and selection – Relative merits of location of power plant.

UNIT III Preliminary Design

9

Selection of geometric and aerodynamic parameters – Weight estimation and balance diagram – Drag estimation of complete aircraft – Level flight, climb, takeoff and landing calculations – range and endurance – static and dynamic stability estimates – control requirements.

UNIT IV Special Problems

9

Layout peculiarities of subsonic and supersonic aircraft – optimization of wing loading to achieve desired performance – loads on undercarriages and design requirements.

UNIT V Structural Design

a

Estimation of loads on complete aircraft and components – Structural design of fuselage, wings and undercarriages, controls, connections and joints. Materials for modern aircraft – Methods of analysis, testing and fabrication.

- 1. A.A. Lebedenski, "Notos on airplane design", Part-I. I.I.Sc., Bangalore, 2005.
- D.P. Raymer, "Aircraft conceptual design". AIAA Series, 1988.
- 3. E. Torenbeek, "Synthesis of Subsonio Airplane Design", Delft University Press, London, 2011.
- E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., U.S.A., 1980.
 G. Coming, "Supersonic & Subsonic Airplane Design". If Edition, Edwards Brothers Inc., Michigan, 2005,
- 6. H.N.Kota, Integrated design approach to Design fly by wire' Lecture notes Interline Pub. Bangalore, 1992.
- 7. Michael Niul, Michael C.Y. Niul, Airframe Stress Analysis & Sizing 1st Edition 1997.

00-						P	Os						F	SO ₅	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
001	3	2	2			- 3	2	3	2	3	2	2		*	
COS	3	2	2	-	12	1	1	3	3	3	2	2			
CO3	3	1	2	-	-	3	1	2	2	2	3	3	*		
004	3	1	2	-	-	2	2	3	3	2	3	2	*	-	
CD5	3	2	2			3	1	3	2	2	3	3	14	-	

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	- 5	15
	Attendance	5:	

	Sumn	native Assessn	rent	
	Internal A	ssessment Exa		
Bloom's Category	1AE - I (7.5)	IAE - II (7.5)	IAE - (11 (10)	Final Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze				
Evaluate				
Creato				

20PARE03	Theory of Elasticity	L	T	Р	¢
ZOPAREUS	Theory of Elasticity	3	D	0	3
Nature of Course	Professional Elective				
Pre requisites	Aircraft Material Process, Composite Materials				

The course is intended to

- To impart knowledge to students on basic governing equations of elasticity, solving of 2D problems in Cartesian and polar coordinates
- To introduce various theories and methods to solve torsion related problems.

Course outcomes:

On successful completion of the opurse, students will be able to

CO. No.	Course Outcome	Bloom's Lavel
G O 1	Elestic constants	Apply
GO2	Basic Equations of Elasticity	Арріу
CO3	2 - D Problems in Cartesian Coordinates	Apply
CO4	2 - D Problems in Polar Coordinates	Apply
CO5	Tarsion	Apply

Course contents:

UNIT I Introduction

6

Definition, notations and sign conventions for stress and strain. Stress - strain rolations, Straindisplacement relations- Elastic constants.

UNIT II Basic Equations of Elasticity

10

Equations of equilibrium – Compatibility equations in strains and stresses –Boundary Conditions - Saint-Venant's principle - Stress ollipsoid – Stress invariants – Principal stresses in 2-0 and 3-D

UNIT III 2 - D Problems in Cartesian Coordinates

9

Plane stress and plain strain problems - Airy's stress function - Biharmonic equations - 2- Diproblems - Cantilever and simply supported beams.

UNIT IV 2 - D Problems in Polar Coordinates

12

Equations of equilibrium — Strain – displacement relations – Strass – strain relations – Arry's stress function – Use of Dunder's table. - Ax symmetric problems - Bending of Curved Bars - Circular Discs and Cylinders – Ratating Discs and Cylinders – Kirsch, Boussinasque's and Michell's problems

UNIT V Torsion

В

Coulomb's theory-Naviers theory-Saint Venant's Semi-Inverse method — Torsion of Circular, Elliptical and Thangular sections - Prandt's theory-Membrane analogy.

- 1. E. Sechler, "Elasticity in Engineering" John Wiley & Sons Inc., New York, 1980.
- 2. Enrico Volterra and Caines, J.H. Advanced strength of Materials, Prentice Hall, 1991.
- 3 S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, 1985.
- 4. Ugural, A.C and Fensier, S.K, Advanced Strength and Applied Elasticity, Prentice half, 2003.
- Wang, C.T. Applied elasticity, McGraw Hill 1993.

COs						٩	Qs .						PSQs		
CUS	1	2	3	4	5	6	7	8	0	10	11	12	1	2	3
CO1	1	2	3	3	3	-		-		-	-	2			
CO2	3	2	3	1	1	3	(ec)	141		-	100	2			T
CO3	3	1	3	З	3	- 12	(720)	-		2		2			T
CO4	3	2	3	Э	1			-	*	-	. + :	2			
005	3	1	3	3	2	38			-	+:		1			
	3	F	ligh			19					2	Mediu	ım		

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Sumn	native Assessn	nent .	
	Internal A	s sess ment Exa	minations	
Bloom's Category	IAE - 1 (7.5)	IAE – II (7.5)	IAE - III (10)	Final Examination (60)
Remember	10	10	13	20
Understand	10	10-	10	20
Apply	30	30	30	60
Analyze		T As III	2000	
Evaluate				[=]= [= (*]
Create				

20PARE04	Rocketry and Space Mechanics	L	T	P	Ċ
2077111254	Notice y and opace motifica	3	Q	0	3
Nature of Course	Professional Elective				
Pre requisites	Propulsion				

The course is intended to

- 1. To familiarize the students on fundamental aspects of rocket propulsion.
- 2. To familiarize the students on Multi stating of rocket vehicle and spacecraft dynamics.

Course outcomes:

On successful completion of the course, students will be able to

CQ. No.	Course Outcome	Bloom's Level
CO1	Oroital Mechanics	Арріу
002	Satellite Dynamics	Арріу
003	Rocket Metion	Apoly
CO4	Rocket Aerodynamius	Арріу
COS	Staging and Control of Rocket Venicles	Арріу

Course contents:

UNIT I Orbital Mechanics

9

Description of solar system — Kop'er's Laws of planetary motion — Newton's Law of Universal gravitation — Two body and Three-body problems — Jacobis Integral, Librations points - Estimation of orbital and escape velocities

UNIT II Satellite Dynamics

Ð

Geosynchronous and geostationary satellites- factors determining life time of satellites – satellite perturbations methods to calculate perturbations. Hohmann orbits – calculation of orbit parameters. Determination of satellite rentangular coordinates from orbital elements.

UNIT III Rocket Motion

10

Principle of operation of rocket motor - thrust equation — one dimensional and two dimensional rocket motions in free space and homogeneous gravitational fields — Description of vertical, inclined and gravity turn trajectories determinations of range and altitude — simple approximations to burnout velocity.

UNIT IV Rocket Aerodynamics

q

Description of various loads experienced by a rockel passing through atmosphere – drag estimation – wave drag skin friction drag, form drag and base pressure drag - Boat-tailing in missiles – performance at various allitudes – conical and bolt shaped nozzles – adapted nozzles - rocket dispersion – launching problems

UNIT V Staging and Control of Rocket Vehicles

8

Need for multi-staging of rocket vehicles – multistage vehicle optimization – stage separation dynamics and separation techniques- perodynamic and jet control methods of maket vehicles - SITVC.

- 1. E.R. Parker, "Materials for Missiles and Spacecraft", McGraw-Hill Book Co., Inc., 1982.
- 2 G.P. Sutten, "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 5"Edition, 1986.
- J.W. Cornelisse, "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co., Ltd., London, 1982
- 4. Van de Kamp, "Elements of Astro-mechanics", Pitman Publishing Co., Ltd., London, 1980.

	POs													P\$Qs		
COs	1	-2	3	4	5	6	7	А	9	10	11	12	1	2	3	
CO1	1	2	3	3	3	:#1		-			*	2			T	
CO2	3	2	3	1	1	98		×	*	*		2			T	
CO3	3	1	3	3	3							2			T	
CD4	3	2	3	3	1	2		-		*		2			T	
CO5	3	1	3	3	2	2		-		~	1	1			T	
	3	H	եցի			12					2	Mediu	ודיו			

	Formalive assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remomber	Online Quiz	5	
Understand	Tutonal Class / Assignment	5	15
	Attendance	5	

	Sumh	native Assessm	ient	
	Internal A	ssessment Exa	minations	1000
Bloom's Category	IAE -1 (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Арру	30	30	30 -	60
Апа уге				
Evaluate				
Create				

20PARE05	Experimental Stress Analysis	L	T	P	Ç
ZUPAKEUS	Experimental Stress Analysis	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Strength of Materials				

The course is intended to

- To make the students learn basic principles of operation, electrical resistance strain gauges, photoelasticity and
- 2. To make the students learn interferometric techniques and non destructive methods

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Oulcome	Bloom's Level
001	Orbital Mechanics	Apply
002	Satellite Oynamics	Apply
CO3	Rocket Mailan	Apply
GO4	Rocket Aerodynamics	Apply
CO5	Staging and Control of Rocket Vehicles	Арріу

Course contents:

UNIT I Introduction

.

Principle of measurements-Accuracy, sensitivity and range- Mechanical, Optical, Acoustical and Electrical extensionieters.

UNIT II Electrical Resistance Strain Gauges

12

Principle of operation and requirements-Types and their uses-Materials for strain gauge- Calibration and temperature compensation-Gross sensitivity-Rosotte analysis-Wheatstone bridge-Potentiometer circuits for static and dynamic strain measurements-Strain indicators- Application of strain gauges to wind tunnel balance

UNIT III Principles of Photoelasticity

9

Two dimensional photo elasticity-Concepts of photoelastic effects-Photoelastic materials-Stress optic faw-Plane polariscope-Circular polariscope-Transmission and Reflection type-Effect of stressed model in Plane and Circular polariscope. Interpretation of fringe pattern isocinics and isochromatics.-Fringe sharpening and Fringe multiplication techniques-Compensation and separation fechniques-Introduction to three dimensional photoelasticity.

UNIT IV Photoelasticity and Interferometry Techniques

a

Fringe sharpening and Fringe multiplication techniques Compensation and suparation techniques. Calibration methods -Phulo elastic materials. Introduction to three dimensional photoelasticity. Moiro fringes - Laser holography - Grid methods-Stress coat

UNIT V Non Destructive Techniques

7

Radiography- Ultrasonics- Magnetic particle inspection- Fluorescent penetrant technique-Eddy current technique thermography- MiCRO FOCUS CT scan.

- A.J. Durelli and V.J. Parks. 'Moire Analysis of Strain', Prentice Hall Inc., Englewood Cliffs, New Jersey, 1980.
- G.S. Holister, "Experimental Stress Analysis, Principles and Methods", Cambridge University Press, 1987.
- J Prasad & CGK Nair Non-Destructive Testing and Evaluation of Material, Second Edition. Paperback –ISBN-13: 97R-0070707030, Amezon, 2011
- J.W. Dally and M.F. Riley, "Experimental Stress Analysis", McGraw-Hill Book Co., New York, 1988
- M. Hetenyi, "Handbook of Experimental Stress Analysis", John Wiley & Sons Inc., New York, 1980.
- P. Fordham, "Non-Destructive Testing Techniques" Business Publications, London, 1988.
- Srinath, L.S., Raghava, M.R., Lingsiah, K., Gargesha, G., Pant B. and Ramachandra, K. Experimental Stress Analysis. Tata McGraw Hill, New Delhi, 1984
- 8. U. C. Jindal Experimental Stress Analysis, Pearson India, ISBN: 9789332503533, 2012.

		POs													PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1		
ÇQ1	1	2	3	3	3	12		×.			-	2			T		
ÇQZ	3	2	3	1	1	35	-	-	-	-	-	2			T		
CÓ3	3	1	3	3	3	-	-	-		18	-	2			Ī		
CO4	3	2	3	3	1	82	-5	13	-	12	-	2					
COS	3	1	3	3	2		-			15		1			T		

	Formative assessment	in the second	
Bloom's Level	Assessment Component	Marks	Total marks
Kemember	Online Quiz	5	
Understand	Futonal Class / Assignment	5	'5
	Attendance	5	

	Sumn	native Assessm	nent				
	Internal A	ssessment Exa	minations				
Bloom's Category	IAE - I (7.5)	IAE - 0 (7.5)	(AE - III (10)	Figs Examination (60)			
Remainber	10	10	10	20			
Understand	10	-10	10	20			
Арріу	30	30	30	60			
Analyze							
Evaluate		1					
Create	1	1					

II- SEMESTER (Elective-II. & III)

20PARE11	Theory of Plates and Shells	L	T	P	Ç
201711	THOUS OF THESE ENG OTHERS	3	0	0	3
Nature of Course	Professional Elective	- 40	(i=0)		
Pre requisites	Strength of materials				

Course objectives:

The course is intended to

- Upon completion of the churse, students will get knowledge on the behaviour of plates.
- 2 Students will get knowledge on shells with different deametry under various types of loads.

Course outcomes:

On Successful completion of the course, students will be able to

GO. No.	Course Outcome	Bloom's Leve
CO1	Orbital Mechanics	Apply
CO2	Satellite Dynamics	Apply
СФЗ	Rocket Molion	Apply
CO4	Rocket Aerodynamics	Apply
005	Staging and Control of Rocket Vehicles	Apply

Course contents:

UNIT I Classical Plate Theory

R

Classical Plate Theory - Assumptions - Differential Equations - Boundary Conditions

UNIT II Plates of Various Shapes

10

Navier's Method of Solution for Simply Supported Rectangular Plates - Levy's Method of Solution for Rectangular Plates under Different Boundary Conditions. Gircular plates.

UNIT III Eigen Value Analysis

2

Stability and Free Vibration Analysis of Reclangular Plates with vanous end conditions."

UNIT IV Approximate Methods

10

Rayleigh - Ritz, Galerkin Methods-- Finite Difference Method - Application to Rectangular Plates for Static, Free Vibration and Stability Analysis.

UNIT V Shells

9

Basic Concepts of Shell Type of Structures – Membrane and Bending Theories for Circular Cylindrical Shells.

Total: 45 Periods

- Flugge, W. Stresses in Shells, Springer Verlag, 1985.
- Harry Kraus, "Thin Elastic Shells" John Wiley and Sons. 1987.
- T.K.Varadan & K. Bhaskar, "Analysis of plates Theory and problems", Narosha Publishing Co., 1999.
- 4. Tymoshenka, S.P. and Gerc. J.M., Theory of Elastic Stability, McGraw Hill Book Co. 1986.
- 5 Timoshenko, S.P. Winowsky, S., and Kreger, Theory of Plates and Shells, McGraw Hill Book, Co., 1990.

	PÓs									PSOs				
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3	3	3	-	-	-	20	-	-	2			T
3	2	3	1	1	-	-	-	-	-	-	2			T
3	1	3	3	3	-	-	-			-	2			T
3	2	3	3	1	-		-	-	-	-5%	2			
3	1	3	3	2	14		-	-	14	-	1			
	3 3	1 2 3 2 3 1 3 2	1 2 3 3 2 3 3 1 3 3 2 3	1 2 3 3 3 2 3 1 3 1 3 3 3 2 3 3	1 2 3 3 3 3 2 3 1 1 3 1 3 3 3 3 2 3 3 1	1 2 3 3 3 - 3 2 3 1 1 - 3 1 3 3 3 - 3 2 3 3 1 -	1 2 3 3 3 - - 3 2 3 1 1 - - 3 1 3 3 3 - - 3 2 3 3 1 - -	1 2 3 3 3 - - - 3 2 3 1 1 - - - 3 1 3 3 3 - - - 3 2 3 3 1 - - -	1 2 3 3 3 - - - - 3 2 3 1 1 - - - - 3 1 3 3 3 - - - - 3 2 3 3 1 - - - -	1 2 3 3 3 - <td>1 2 3 3 -<td>1 2 3 3 3 - - - - - 2 3 2 3 1 1 - - - - - - 2 3 1 3 3 3 - - - - - 2 3 2 3 3 1 - - - - - 2</td><td>1 2 3 3 3 - - - - - 2 3 2 3 1 1 - - - - - 2 3 1 3 3 3 - - - - - 2 3 2 3 3 1 - - - - - 2</td><td>1 2 3 3 3 - - - - - 2 3 2 3 1 1 - - - - - 2 3 1 3 3 3 - - - - - 2 3 2 3 3 1 - - - - - 2</td></td>	1 2 3 3 - <td>1 2 3 3 3 - - - - - 2 3 2 3 1 1 - - - - - - 2 3 1 3 3 3 - - - - - 2 3 2 3 3 1 - - - - - 2</td> <td>1 2 3 3 3 - - - - - 2 3 2 3 1 1 - - - - - 2 3 1 3 3 3 - - - - - 2 3 2 3 3 1 - - - - - 2</td> <td>1 2 3 3 3 - - - - - 2 3 2 3 1 1 - - - - - 2 3 1 3 3 3 - - - - - 2 3 2 3 3 1 - - - - - 2</td>	1 2 3 3 3 - - - - - 2 3 2 3 1 1 - - - - - - 2 3 1 3 3 3 - - - - - 2 3 2 3 3 1 - - - - - 2	1 2 3 3 3 - - - - - 2 3 2 3 1 1 - - - - - 2 3 1 3 3 3 - - - - - 2 3 2 3 3 1 - - - - - 2	1 2 3 3 3 - - - - - 2 3 2 3 1 1 - - - - - 2 3 1 3 3 3 - - - - - 2 3 2 3 3 1 - - - - - 2

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember Ön	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Sumn	native Assessm	nent			
	Internal A					
Bloom's Category	IAE - 1 (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (6)		
Remember	10	10	19	2C		
Understand	10	10	10	20		
Apply	30	30	30	60		
Analyze				Apr. 1 12 2		
Evaluate						
Create						

20PARE12	High Temperature Problems in Structures	L	Т	Р	C
20,747212	The state of the s	3	0	Ð	3
Nature of Course	Professional Elective				
Pre requisites	Aircraft structures				

The course is intended to

- Upon completion of the course, students will learn the analysis of har.
- 2. Students will learn the plane truss and beam under mechanical and thermal loads.

Cottrse outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Temperature Equations & Aerodynamic Heating	Apply
CO2	Thermal Stress Apalysis	Apply
CO3	Thermal Stress in Beams, Trusses And Thin Cylinders	Apply
GO4	Thermal Stresses in Plates	Apply
CO5	Special Topics & Materials	Apply

Course contents:

UNIT | Temperature Equations & Aerodynamic Heating

п

Basics of conduction, radiation and convection — Fouriers equation — Boundary and initial conditions — One-dimensional problem formulations — Methods and Solutions. Fleat balance equation for idealised structures - Adiabatic temperature - Variations - Evaluation of transfert temperature.

UNIT II Thermal Stress Analysis

9

Thermal stresses and strains – Equations of equilibrium – Boundary conditions – Thermoetasticity – Two dimensional problems and solutions – Airy stress function and applications.

UNIT III Thermal Stress in Beams, Trusses And Thiri Cylinders.

9

Analysis of bar, plane tross and beam under mechanical loads and temperature. Thermal stress analysis of thin cylinder.

UNIT IV Thermal Stresses in Plates

9

Membrane thermal stresses –Rectangular plates – Circular plates – Thick plates with temperature varying along thickness.

UNIT V Special Topics & Materials

9

Thermal bucking. Analysis including material properties variation with temperature.

- A.B. Bruno and H.W. Jerome, "Theory of Thermal Stresses", John Wiley & Sons Inc., New York, 1980.
- 2. D.J. Johns, 'Thermal Stress Analysis', Pergamon Press, Oxford, 1985.
- N.J. Hoff, "Lligh Temperature effects in Aircraft Structures", John Wiley & Sons Inc., London, 1986.

		POs							P\$Qs						
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CD1	1	2	3	3	3	-		-				2			T
CO2	3	2	Э	1	1	96		*			100	2			T
CO3	3	1	3	3	3	2		-		43		2			T
CO4	3	2	3	3	í		(2)		æ	*		2			T
CO5	3	1	3	3	2	-	(A)	-		-80	-	1			
	3	н	ligh		A11 - 225						2	Medin	ш		

Formative assessment					
Bloom's Level	Assessment Component	Marks	Total marks		
	Online Quiz	5			
	Tutorial Class / Assignment	5	15		
	Attendance	5			

Summative Assessment								
	Internal A							
Bloom's Category	IAE - I (7.5)	IAE – II (7.5)	IAE - III (10)	Final Examination (60)				
Remember	10	10	10	2C				
Understand	10	10	10	20				
Арріу	30	30	30	60				
Апађуге			-					
Evaluale								
Create			- F					

20PARE13	Fatigue and Fracture Mechanics	L	7	P	Ċ				
2017111270	3 D								
Nature of Course	Professional Elective								
Pre regulaites	Mechanics of machines								

The course is intended to

- To make the students team about fundamentals of fatigue & fracture mechanics.
- Students learn about statistical aspects of fatigue behaviour & labgue design and testing of aerospace structures.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Leve
CO1	Fatigure Of Structures	Apply
COZ	Statistical aspects of Fatigue Behaviour	Apply
ÇO3	Physical aspects of Fatigue	Apply
CO4	Fracture Mechanics	Apply
CO5	Fatigue Design and Testing	Apply

Course contents:

UNIT I Fafigue Of Structures

10

S.N. curves – Endurance limit – Effect of mean stress – Goodman, Gerher and Soderberg relations and diagrams — Notches and stress concentrations — Neubers stress concentration factors – Notched S-N curves.

UNIT II Statistical aspects of Fatigue Behaviour

Low cycle and high cycle fatigue – Coffin-Manson's relation – Transition life – Cyclin Strain hardening and softening – Analysis of load histories – Cycle counting techniques – Cumulative damage – Miner's theory – other theories.

UNIT III Physical aspects of Fatigue

5

Phase :n fatigue life - Crack initiation - Crack growth - Final fracture - Dislocations - Fatigue fracture surfaces.

UNIT IV Fracture Mechanics

15

Strength of cracked bodies – potential energy and surface energy – Griffith's theory – Irwin – Orwin extension of Goffith's theory to ductile materials – Stress analysis of cracked bodies – Effect of thickness on tracture toughness – Stress intensity factors for typical geometries

UNIT V Fatigue Design and Testing

7

Safe life and fail safe design philosophies – Importance of Fracture Mechanics in aerospace structure – Application to composite materials and structures.

- C.G.Sih. "Mechanics of Fracture", Vol.1 Sijthoff and Noordhoff International Publishing Co., Netherland, 1989.
- D.Brock, "Élementary Engineering Fracture Mechanics", Noordhoff International Publishing Co., London, 1994.
- J.F.Knott, "Fundamentals of Fracture Mechanics", Butterworth & Co., (Publishers) Ltd., London, 1983.
- 4. W.Rarrois and t. Ripley, "Fatigue of Aircraft Structures", Pergarmon Press, Oxford, 1983.

co-		POs												PSQs			
ÇOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	2	3	3	3	+						2			T		
GO2	3	2	3	1	1			-		-	-	2					
GO3	3	1	3	3	3	-		2				2			T		
CO4	3	2	3	3	1	9		- 5		-		2			T		
005	3	1	3	3	2	100	(0)	*				1			T		

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remomber	Online Quiz	5	
Undersland	Tutorial Class / Assignment	5	15
	Attendance	5	

	Sumo	native Assessm	nent			
	Internal A	ssessment Exa	minations	- 50		
Bloom's Category	IAE -1 (7.5)	IAE - (1 (7.5)	IAE III (10)	Final Examination (60		
Remember	10	10	10	20		
Understand	10	10	10	20		
Apply	30	30	30	50		
Analyze						
Evaluate						
Create						

20PARE14	Industrial Aerodynamics	Ļ	T	P	C
EVI MILLY	Made And and Anglishmen	3	0	D	3
Nature of Course	Professional Elective				
Pre requisites	Aerodynamics				

The course is intended to

- 1 Upon completion of the course, students will learn about non-aeronautical uses of aerodynamics such as read vehicle, building aerodynamics
- 2. Students will learn about problems of flow induced vibrations.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Lavel
CO1	Faligue Of Structures	Apply
CO2	Statistical aspects of Fatigue Behaviour	Apply
CO3	Physical aspects of Fatigue	Apply
CO4	Frecture Mechanics	Apply
COS	Fatigue Design and Testing	Apply

Course contents:

UNIT I Almosphere

0

Types of winds, Causes of variation of winds, Almospheric boundary Payer, Effect of terrain on gradient height. Structure of furbulent flows.

UNIT II Wind Energy Collectors

9

Horizontal axis and vertical axis machines, Power operficient, Betz coefficient by momentum theory.

UNIT III Vehicle Aerodynamics

9

Power requirements and drag coefficients of automobiles. Effects of our back angle, Acrodynamics of trains and Hovergraft.

UNIT IV Building Aerodynamics

9

Pressure distribution on low rise buildings, wind forces on buildings. Environmental winds in city blocks, Special problems of talk buildings. Building codes, Building ventilation and architectural aerodynamics.

UNIT V Flow Induced Vibrations

1

Effects of Reynolds number on wake formation of bluff shapes, Vortex induced vibrations, Galloping and stall flutter.

- 1. M.Sovran (Ed), "Aerodynamics and drag mechanisms of bluff bodies and road/vehicles", Ptenum. press, New York, 1978.

 2. N.G. Calvent, "Wind Power Principles", Charles Griffin & Co., London, 1979.
- 3. P. Sachs, "Winds forces in engineering", Pergamon Press, 1978.
- 4. R.D. Blevins, "Flow induced vibrations", Van Nostrand, 1990.

COs	PÔs												PSOs			
COS	1	2	3	4	5	ti	7	8	9	10	11	12	1	2	3	
CO1	1	2	3	3	3	-	-	-				2				
CO2	3	2	3	1	1	*		-	-	#1	-	2			I	
CO3	3	1	3	3	3	2	-	2	-	-		2			T	
CO4	3	2	3	3	1			-		-	-	2				
CO5	3	1	3	3	2	18	-	¥			+				T	
200	3		lich	3	2	*		*	-		2	Mediu	III		4	

Formative assessment								
Bloom's Level	Assessment Component	Marks	Total marks					
Remombor	Online Quiz	5						
	Futorial Class / Assignment	5	15					
	Attendance	5						

	Şumn	native Assessn	nent	
	Internal A	ssessment Exa	iminations	
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)
Remember	10	-0	10	20
Understand	10	- 10	10	20
Apply	30	30	30	60
Analyze				
Evaluate				
Create				

20PARE15	Hypersonic Aerodynamics	_ L	T	P	C
		3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aerodynamics				

The course is intended to

- 1 To make students learn the peculiar hypersonic speed flow characteristics pertaining to flight vehicles.
- 2 The approximate solution methods for hypersonic flows.
- The objective is also to impart knowledge on hyporsonic viscous interactions and their effect on acrodynamic heating.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Basics of Hypersonic Aerodynamics	Apply
COZ	Surface Inclination Methods for Hypersonic inviscid Flows	Apply
003	Approximate Methods for Invisori Hypersonic Flows	Apply
CO4	Viscous Hypersonic Flow Theory	Apply
005	Viscous Interactions in Hypersunic Flows	Apply

Course contents:

UNIT I Basics of Hypersonic Aerodynamics

8

Thin shock layers – entropy layers – low density and high density flows – hypersonic flight paths hypersonic flight similarity parameters – shock wave and expansion wave relations of inviscid hypersonic flows.

UNIT II Surface Inclination Methods for Hypersonic inviscid Flows

9

Local surface inclination methods – modified Nowtonian Law – Newtonian theory – tangent wedge or tangent cone and shock expansion methods – Calculation of surface flow properties

UNIT III Approximate Methods for Inviscid Hypersonic Flows

.

Approximate methods hypersonic small disturbance equation and theory – thin shock layer theory – blast wave theory - entropy effects - rotational method of characteristics - hypersonic shock wave shapes and correlations.

UNIT IV Viscous Hypersonic Flow Theory

10

Navier-Stokes equations – boundary layer equations for hypersonic flow – hypersonic boundary layer – hypersonic boundary layer theory and rion similar hypersonic boundary layers – hypersonic aerodynamic heating and entropy layers effects on aerodynamic heating – heat flux estimation.

UNIT V Viscous Interactions in Hypersonic Flows

9

Strong and weak viscous interactions – hypersonic shockwaves and boundary layer interactions – Estimation of hypersonic boundary layer transition- Role of similarity parameter for langinar viscous interactions in hypersonic viscous flow.

Total: 45 Periods

- John D. Anderson, Jr., Hypersonic and High Temperature Gas Dynamics, McGraw-HillSeries, New York, 1996
- 2. John T. Bertin, Hypersonic Aerothermodynamics, 1994 AIAA Inc., Washington D.
- 3. John.D.Anderson, Jr., Modern Compressible Flow with Historical perspective Hypersonic Series.
- William H. Heiser and David T. Praff, Hypersonic Air Breathing propulsion. AIAA Education Series.

co-		POs												PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
001	1	2	+ 3	3	3			-			1	2					
CO2	3	2	3	1	1	=	:=2		-	*	+	2					
CO3	3	1	3	3	3	*		+	*	(4)	-	2					
CO4	3	2	- 3	3		2	700	-	2	-	-	2			T		
005	3	1	3	3	2	-		-	-		-	1			T		

	Formative aasesament		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tulorial Class / Assignment	5	15
	Attendance	5	

	Sumr	native Assessn	nent .	
	Internal A	ssessment Exa		
Bloom's Category	IAE - 1 (7.5)	IAE - I (7.5) IAE - II (7.5) IAE - III (10		Final Examination (60)
Remember	10	10	10	20
Understand	10	13	10	20
Apply	30	3D	30	69
Analyze				
Evaluate				
Create				

20PARE16	Computational Heat Transfer	L	Ŧ	P	C
231711210	adultania itali iniliati	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Computational fluid dynamics				

The course is intended to

- 1. To make the students learn to solve conductive, transient conductive, convective problems.
- 2. Students learn to solve radiative heat transfer problems using computational methods.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Solution to algebraic equalibri-Direct Method and Indirect Method- Types of boundary condition	Apply
CO2	Conductive Heat Transfer	Apply
CO3	Transient Heat Conduction	Apply
CO4	Convective Heat Transfer	Apply
005	Radiative Heat Transfer	Apply

Course contents:

UNIT Untroduction

п

Finite Difference Method-Introduction-Taylor's series expansion. Discretisation Methods Forward, backward and central differencing scheme for Ist order and second order Derivatives. Types of partial differential equations-Types of errors. Solution to algebraic equation-Direct Method and Indirect Method-Types of boundary condition, FDM - FEM - FVM.

UNIT II Conductive Heat Transfer

0

Ceneral 3D-heat conduction equation in Carlesian, cytindrical and spherical coordinates. Computation (FDM) of One – dimensional steady state heat conduction –with Heat generation-without Heat generation- 2D-heat conduction problem with different boundary conditions. Numerical treatment for extended surfaces. Numerical treatment for 3D- Heat conduction. Numerical treatment to 1D-steady heat conduction using FEM.

UNIT III Transient Heat Conduction

•

Introduction to Implicit, explicit Schemes and crank-Nicolson Schemes Computation(FDM) of One —dimensional un-steady heat conduction —with heat Generation-without Heat generation - 20-transient heat conduction problem with different boundary conditions using Implicit, explicit Schemes, Importance of Courant number, Analysis for I-D,2-D transient heat Conduction problems.

UNIT IV Convective Heat Transfer

0

Convection- Numerical treatment(FOM) of steady and unstoady 1-D and 2-d heat convectiondiffusion steady unsteady problems- Computation of thermal and Velocity boundary layer flows. Upwind scheme. Stream function-vorticity approach-Creeping flow

UNIT V Radiative Heat Transfer

9

Radiation fundamentals-Shape factor calculation-Radiosity method- Absorption Method- Montacatro method-Introduction to Finite Volume Method- Numerical treatment of radiation enclosures using finite Volume method. Developing a numerical code for 1D, 2D heat transfer problems.

Total: 45 Periods

- 1. C.Y.Chow, "Introduction to Computational Fluid Dynamics", John Wiley.
- 2. J.P. Holman, "Heat Transfer". McGraw-Hill Book Co., Inc., New York, 6th Edition, 1991.
- John D. Anderson, JR" Computational Fluid Dynamics", McGraw-Hill Book Co., Inc., New York, 1995.
- 4. John H. Lienhard, "A Heat Transfer Text Book", Prentice Hall Inc., 1981.
- Pletcher and Tennahils * Computational Heat Trasnfer*
- 6. T.J. Chung, Computational Fluid Dynamics, Cambridge University Press. 2002.
- 7. Yunus Al Cengel, Heat Transfer A Practical Approach Tata McGraw Hill Edition, 2003.

00.						P	Os						ı	PSOs	i
COs	1	2	3	4	. 5	ô	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	2	-	-			2			
CO2	3	2	3	1	1		2	7/2/7	-	-	-	2			
CD3	3	1	3	3	3		-	100			- 31	2			
004	3	2	3	3	1		2	-	9	-	2	2			
005	3	1	3	3	2		-		- 2			1			

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	· 5
	Attendance	5	

	Şumn	native Asse ssn	nent					
	Internal A	ssessment Exa	nent Examinations					
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	(AE - III (10)	Final Examination (60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyze				198				
Evaluate								
Create								

20PARE17	Wind Power Engineering	L	Т	Р	C
		3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aerodynamics, Flight dynamics				

The course is intended to

- Upon completion of the course, students will learn about aerodynamics.
- Students will learn about design and control of wind turbines.

Course outcomes:

On successful completion of the nourse, students will be able to

CO. No.	Course Outcome	Bloom's Level
GO1	Wind Energy Power characteristics	Apply
CO2	Wind Characteristics and Resources	Apply
CO3	Aerodynamics of Wind Turbines	Apply
CO4	Wind Turbine Design & Control	Apply
005	Environmental and Site Aspects	Apply

Course contents:

UNIT I Introduction to Wind Energy

E

Background, Motivations, and Constraints Historical perspective. Modern Components, wind turbines geometry and Power characteristics.

UNIT II Wind Characteristics and Resources

R

General characteristics of the wind resource, Almospheric boundarylayer characteristics, Wind data analysis and resource estimation, Wind turbing energy production estimates using statistical techniques.

UNIT III Aerodynamics of Wind Turbines

12

Overview : 1-D Momentum theory, ideal horizontal axis wind turbine with wake rotation. Airfolls and aerodynamic concepts -Momentum theory and blade element theory. General rotor blade shape performance prediction - Wind turbing rotor dynamics.

UNIT IV Wind Turbine Design & Control

9

Brief design overview —Introduction -Wind turbine control systems -Typical grid-connected turbine operation -Basic concepts of electric power-Power transformers -Electrical machines

UNIT V Environmental and Site Aspects

В

Overview- Wind turbine siting - Installation and operation- Wind farms- Overview of wind energy aconomics-Electromagnetic interference-noise-Land use impacts - Safety

- Emil Simiu & Robert H Scanlan. Wind effects on structures fundamentals and applications to design, John Wiley & Sons Inc New York, 1996.
- 2. IS: 875 (1987) Part III Wind loads, Indian Standards for Building codes.
- N J Cook, Design Guides to wind loading of buildings structures Part 1 & II, Butterworths, London, 1985
- 4. Tom Lawson Building Aerodynamics Imperial College Press London, 2001.

COs						P	Qв						1	P\$0:	5
COS	1	2	3	4	5	ñ	7	8	9	10	11	12	1	2	1
001	1	2	3	Э	3	-					-	2			
CO2	3	2	3	1	1	8	(*)	-		*		2			Г
CO3	3	1	3	3	3		-		-	-		2			Г
CO4	3	2	3	3	1		-	-	-		1.5	2			
COS	3	1	3	3	2					-		1			Г

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Atlendance	5	1

	Summ	ative Assessm	ent	
V	Internal As			
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)
Remember	.10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze	(
Evaluate			-	
Create				

SHAIRMAN BOARD OF STUDIES

III- SEMESTER (Elective-IV & V)

20PARE21	As or Planetalia	- 1	τ	Р	С
20PAREZ1	Aero Elasticity	3	٥	D	3
Nature of Course	Professional Elective				
Pre requisites	Aircraft Structures				

Course objectives:

The course is intended to

- To make the students understand sero elastic phenomena, fluiter and to make them solve steady state aero elastic problems
- 2 Students can understand the theoretical concepts of material penaviour with particular emphasis on their elasticity property.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
001	To understand the aeroelastic phenomena	Apply
CO2	Ability to analysis strip theory and numerical approximations	Арріу
CO3	To understand the aerolastic problems	Apply
CG4	Ability to known flutter analysis	Apply
CO5	To Evaluate the seroelastic problems	Apply

Course contents:

UNIT I Aeroelastic Phenomena

Stah lify versus response prublems — The sero-elastic triangle of forces — Aeroelasticity in Aircraft

Design — Prevention of percelastic instabilities. Influence and stiffness co-efficient, Flexure —
torsinnal oscillations of beam — Differential equation of motion of beam.

UNIT II Divergence of a Lifting Surface

10

Simple two dimensional idealisations-Strip theory – Integral equation of the second kind – Exact solutions for simple reclangular wings – 'Semingid' assumption and approximate solutions – Generalised coordinates – Successive approximations – Numerical approximations using matrix equations

UNIT III Steady State Aerolastic Problems

5

Loss and reversal of a terum control — Critical afteron reversal speed — Afteron efficiency — Semi-rigid theory and successive approximations — Lift distribution — Rigid and elastic wings. Tail efficiency Effect of elastic deformation on static longitudinal stability.

UNIT IV Flutter Phenomenon

1

Non-dimensional parameters — Stiffness critera — Dynamic mass balancing — Dimensional similarity. Flutter analysis — Two dimensional thin autoits in steady incompressible flow — Quasisteady aerodynamic derivatives. Galerkin method for unitical flutter speed — Stability of disturbed motion — Solution of the flutter determinant — Methods of determining the critical flutter speeds — Flutter prevention and control

UNIT V Examples of Aeroelastic Problems

6

Galloping of transmission lines and Flow induced vibrations of transmission lines, tall stender structures and suspension bridges, VIV

- Y.C. Fung, "An Introduction to the Theory of Aeroelasticity", John Wiley & Sons Inc., New York, 2008.
- 2. R.D.Blevins, "Flow Induced Vibrations", Krieger Pub Co., 2001.
- R.L. Bisplinghoff, H.Ashley, and R.L. Halfmann, "Aeroelashuity". IL Edition Addison Wesley Publishing Co., Inc., 1996.
- 4. E.G. Broadbent, "Elementary Theory of Aeroelasticity", Bun Hill Publications Ltd., 1986,
- 5 R.H. Scanlan and R.Rosenbaum, "Introduction to the study of Aircraft Vibration and Flutter", Macmillan Co., New York, 1981

***		POs											P\$Q8	á	
COs	1	2	3	4	ā	ก	7	Я	9	10	11	12	1	2	3
CO1	1	2	3	3	3		**	-	8	+:	-	2			
CO2	3	2	3	1	1		-	-	2	8	125	2			
CO3	3	1	3	3	3				*		-	2			Г
CO4	3	2	3	3	1		*:		+		-	2			
CO5	3	1	3	3	2				-			1			

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Romember	Online Quiz	5	
Understand	Futorial Class / Assignment	5	15
	Attendance	5	

	Surnin	ative Assessme	int							
	Interna	Internal Assessment Examinations								
Bloom's Calegory	IAE - I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)						
Remember	10	10	10	20						
Understand	10	19	10	20						
Apply	30	30	30	60						
Analyze		1								
Evaluate										
Create										

CHAIRMAN BOARD OF STUDIES

OPE A DECO	Design and American Structure and Structure	1	Т	Р	Ċ
20PARE22	Design and Analysis of Turbomachines	3	Ó	0	3
Nature of Course	Professional Elective				
Pre requisites	Mechanics of machines, Fluid Mechanics and Mach mechanical vibrations	ninery B	lasic	of	

The course is intended to

- To design and analyse the performance of Turbo machines for engineering applications.
- To understand the energy transfer process in Turbomachines and governing equations of various forms.
- To understand the structural and functional aspects of major components of Turbomachines
- To design various Turbomachines for power plant and aircraft applications.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Understand the design principles of the turbomachines	Apply
CØ2	Analyse the turbornachines to improve and optimize its performance	Apply
C O 3	To uniderstand the design concept of combustion champer.	Apply
CO4	Analysis the axial and radial flow turbines,	Apply
C O 5	To understand the designing of gas turbine and jet engine cycles.	Apply

Course contents:

UNIT I Introduction

12

Basius of isentropic flow – static and stagnation properties – diffuser and nozzie configurations - area ratio – mass flow rate – critical properties. Energy transfer between fluid and futur velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equal on for turbomachines and its different forms Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and polytrophic

UNIT II Centrifugal and Axial Flow Compressors

9

Centrifugal compressor - configuration and working — stip factor - work input factor — ideal and actual Work - pressure coefficient - pressure ratio. Axial flow compressor – geometry and working - velocity diagrams — ideal and actual work — stage pressure ratio - free vortex theory — performance convex and losses.

UNIT III Combustion Chamber

.

Basics of combustion, Structure and working of combustion chamber – combustion chamber arrangements - tiame stability – fuel injection nozzles. Flame stabilization - cooling of combustion chamber.

UNIT IV Axial and Radial Flow Turbines

0

Elementary theory of axial flow turbines—stage parameters- multi-staging - stage loading and flow coefficients. Degree of reaction - stage temperature and pressure ratios - single and twin speciarrangements - performance, matching of components, Blade Cooling, Radial flow turbines

UNIT V Gas Turbine and Jet Engine Cycles

9

Gas turbine cycle analysis – simple and actual. Reheated, Regenerative and Intercooled cycles for

power plants, Working of Turbojel, Turbojen, Turboprop, Ramjet, Scramjet and Pulsejet Engines and cycle analysis – thrust, specific impulse, specific fuel consumption, thermal and propulsive efficiencies.

Total: 45 Periods

- Ganesan V., Gas Turbines, Tata McGraw Hill, 2011.
- Khajuria P R, and Dubey S.P., Gas Turbines and Propulsive Systems, Dhanpat Rail Publications, 2003.
- Cohen H., Rogers, G.F.C. and Saravanmotto H.I.H., Gas Turbine Theory-5th Edition, John Wiely. 2001.
- 4. Austin H. Chruch, Centrifugal pumps and blowers. John wiley and Sons. 1980.
- Hill P.G. and Peterson C.R., Mechanics and Thermodynamics of Propulsion, Addition-Wesley, 1970.
- 6. C sanady G.T., Theory of Turbo machines, McGraw Hill, 1964.

۰۰۰	Pos												P\$Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	
001	3	1	1			2	1	1		-	1	2	
CO2	3	2	1	1		2	1	1	-	-	1	2	
CO3	3	1	1	1	-	2	1	2	-	-	1	2	
CO4	2	1	1	1	1	2	1	1	-		1	1	
005	1	1	4	1	1	2	1	2.		32	1	1	
006	1 3	1	нię	1	1	_	1		diwiri	4	1	1	Low

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Summ	ative Assessme	ent	
	Interna	al Assessment f	Examinations	Final Examination
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	(60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze				
Evaluate				
Create				

	Helicopter Aerodynamics	L	T	P	C
20PARE23	nercopter Aerodynamics	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aerodynamics, Fluid mechanics and characteristics, bo concept	undary lay	yer		

The course is intended to

- To impart knowledge to the students and fundamental aspects of helicopter acrodynamics, performance of helicopters, stability and control aspects and also to expose them basic and acrodynamic design aspects.
- Students will learn about the basic ideas of evolution, performance and associated stability problems of helicopter.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about rotorcrafts	Apply
GO2	Apply actuator theory of helicopter aerodynamics	App'y
003	Evaluate the performance analysis of (hight	Analysis
CO4	Understand the flight stability and control	Apply
COS	To understand design concept of aerodynamics	Apply

Course contents:

UNIT Hintroduction

7

Types of retorcraft — autogyro, gyrodyne, helicopter, Main rotor system – articulated semi-rigid, rigid rotors, Collective pitch control, and cyclic pitch control, anti-torque pedals

UNIT II Helicopter Aerodynamics

12

Momentum / actuator disc theory, Blade element theory, combined blade element and momentum theory, vortex theory, rotor in hover, rotor model with cylindrical wake and constant circulation along blade, free wake model. Constant chord and ideal twist rotors, Lateral flapping, Coriolis forces, reaction torque, compressibility effects, Ground effect.

UNIT III Performance

9

Hover and vertical flight, forward level flight, Climb in forward flight, optimum speeds, Maximum level speed, rotor limits envelope – performance curves with effects of affittede.

UNIT IV Stability and Control

9

Helicopter Trim. Static stability – Incidence disturbance, forward speed disturbance, angular velocity disturbance, yawing disturbance, Dynamic Stability

UNIT V Aerodynamic Design

a

Blade section design, Blade tip shapes, Drag estimation - Rear fuselage upsweep.

- 1. Lecture Notes on "Helicopter Technology". Department of Aerospace Engineering, IIT = Kanpur and Rotary Wing aircraft R&D center, HAL, Bangalore, 1998.
- 2. I alit Gupta, "Helicopter Engineering", Himalayan Books, New Delhi, 1996.
- John Fay, "The Helicopter", Himplayan Books, New Delhi, 1995.
 J. Seddon, "Basic Helicopter Aerodynamics", AIAA Education series, Blackwell scientific publications, U.K. 1990.
- 5. A. Gessow and G.C.Meyers, "Aerodynamics of the Helicopter", Macmillan and Co., New York, 1982

tyra	pping	OT CO	urse c	Jutcor	nes (C		in Pro omes	-		omes (POIN	rogra	ա շեզ	SCILLIE.		
CO-	POs													PSOs		
ÇQ8	1	2	3	4	5	-6	7	8	9	10	11	12				
CO1	3	2	3	1	1		-	-	-	-	-	2				
COZ	3	1	3	3	3	-36	*				-	2				
CO3	3	2	3	3	1	1.0		-		-	-	2	-			
CO4	3	2	3	3	2		- 20	-		-		1	3.57			
COS	3	2	Э	3	3	1.4		-		+	+	T.				
	3		Hi	gh		2		Mei	dium		1		L	DW.		

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Summ	alive Assessme	ent			
	Interna	al Assessment E	Examinations	Final Examination		
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	(60)		
Remember	10	10	10	20		
Understand	13	10	10	20		
Арру	30	30	3C	60		
Ana yze						
Evaluate						
Greate				114		

20DADE24	Experimental Aerodynamics	L	Т	Р	Ċ				
20PARE24	3 0 0								
Nature of Course	Professional Elective								
Pre requisites	Aerodynamics, Fluid mechanics and characteristics, concept	boundar	y lay	ег					

The course is Intended to

- To make the students learn basic wind tunnel measurements and flow visualization methods, flow measurement variables and data acquisition method pertaining to experiments in aerodynamics.
- Students will learn about the measurement of flow properties in wind tunnels and their associated instrumentation.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about basic measurements in fluid mechanics	Apply
002	Apply the performance of wind tunnol measurements	Apply
CO3	To understand flow visitalization and analogue	Apply
CO4	To Evaluate the performance of measurements	Analysis
CO5	To understand the uncortainty analysis	Apply

Course contents

UNIT I Basic Measurements in Fluid Machanics

4

Objective of experimental studies – Fluid mechanics measurements – Proporties of fluids – Measuring instruments – Performance terms associated with measurement systems – Direct measurements - Analogue methods – Flow visualization –Components of measuring systems – Importance of model studies - Experiments on Taylor-Protoman theorem and Ekman layer – Measurements in boundary layers -

UNIT II Wind Tunnel Measurements

8

Characteristic features, operation and performance of tow speed, transonic, supersonic and special tunners. Power losses in a wind tunnel – Instrumentation and calibration of wind tunnels. – Turbulence- Wind tunnel balance. – Principle and application and uses. – Balance calibration.

UNIT III Flow Visualization and Analogue Methods

10

Visitalization techniques – Smoke tunnel – Hele-Shaw apparatus - Interferometer – Fringe-Displacement method – Shadowgraph - Schlieren system – Background Oriented Schliren (BOS) System • Hydraulic analogy – Hydraulic jumps – Electrolytic tank

UNIT IV Pressure, Velocity and Temperature Measurements

10

Pilot-Static tube characteristics - Velocity measurements - Hot-wire and mornetry - Constant current and Constant temperature Hot-Wire and mornetry - Hot-film and memorality - Laser Doppler Velocimetry (LDV) - Particle Image Velocimetry (PIV) - Pressure Sensitive Paints - Pressure measurement lechniques - Pressure transducers - Temperature measurements.

UNIT V Data Acquisition Systems and Uncertainty Analysis

a

Data acquisition and processing — Signal conditioning - Estimation of measurement errors — Uncertainty calculation - Uses of uncertainty analysis.

- Rathakrishnan, E., "Instrumentation, Measurements, and Experiments in Fluids,"CRC Press – Taylor & Francis, 2007.
- Robert B Northrop "Introduction to Instrumentation and Measurements", Second Edition, CRC Press, Taylor & Francis, 2006.

						Outc	omes	(PSO)				
COs	POs												
COS	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	1	3	1	1						-	2	
CO2	3	2	3	3	3	14	-					2	
CO3	3	2	3	- 3	1	15	-	-		-	-	2	
CO4	3	1	3	3	2	£	-	-	-	-	-	1	
COS	3	2	3	3	3	- 2		-		-	24	1	
	3		Hi	igh		2		Med	Jium		1		Low

	Formative assessment				
Bloom's Level	Assessment Component	Marks	Total marks		
Remember	Online Quiz	5			
Understand	Tutoria' Class / Assignment	5	15		
	Allendance	5			

	Summ	ative Assessme	ent			
	Interna	al Assessment B	Examinations	Final Examination (60)		
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)			
Remember	10	10	10	20		
Understand	10	10	10	20		
Apply	30	30	30	60		
Analyze						
Evaluate						
Create						

CHAIRMAN-BOARD OF STUDES

20PARE25	High Temperature Gas Dynamics	3 0 0								
Nature of Course	Professional Elective									
Pre requisites	Thermal Engineering, Propulsion, Heat and mass transfer									

The course is intended to

- To make the students learn the kinetic theory of hypersonic flows and statistical thermodynamic aspects of flows at very high temperatures and also to make them familiarize the calculations transport properties of gases high temperature.
- Students will learn statistical thermodynamics and the transport properties of high temperature gases.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about basic of real and ideal gases.	Apply
GO2	To understand the statistical thermodynamics	Apply
CO3	To Analysis the Hypersonic f.cw	Ana'ysis
CO4	To analysis the governing equations of high temperature gases	Analysis
ററമ	To understand transport properties in high temperature gases	App y

Course contents:

UNIT Untroduction

В

Nature of high temperature flows – Chemical effects in a r – Real perfect gases – Gibb's free energy and entropy by chemical and non equilibrium – Chemically reacting mixtures and boundary layers.

UNIT II Statistical Thermodynamics

8

Introduction to statistical thermodynamics – Relevance to hypersonic flow - Microscopin description of gases – Boltzman distribution – Carlesian function

UNIT III Kinetic Theory and Hypersonic Flows

9

Chemical equilibrium calculation of equilibrium composition of high temperature air – equilibrium properties of high temperature air – collision frequency and mean free path – velocity and socied distribution functions.

UNIT IV Inviscid High Temperature Flows

10

Equilibrium and non – equilibrium flows – governing equations for inviscid high temperature equilibrium flows – equilibrium normal and oblique shock wave flows – frozen and equilibrium flows – equilibrium conical and blunt body flows – governing equations for non equilibrium invisced flows.

UNIT V Transport Properties in High Temperature Gases

10

Transport coefficients – mechanisms of diffusion – total thermal conductivity – transport characteristics for high temperature air – radiative transparent gases – radiative transfer equation for transport, absorbing and emitting and absorbing gases.

- John D. Anderson, Jr., Hypersonic and High Temperature Gas Dynamics, McGraw-Hill Series, New York, 1996.
- John D. Anderson, Jr., Modern Compressible Flow with Historical perspective, McGraw-Hill Series, New York, 1996.
- John T. Berlin, Hypersonic Aerothermodynamics publishers AIAA Inc., Washington, D.C., 1994.
- T.K.Bose, High Temperature Gas Dynamics,
- William H. Heiser and David T. Pratt, Hypersonic Air breathing propulsion, AIAA Education Series, 1990.

COs	POs													PSOs		
Ç Q Ş	1	2	3	4	5	8	7	8	9	10	11	12	1	2	1	
C D 1	1	2	3	3	3	**	1041	-	-		-	2			Г	
CO2	3	2	3	1	1	25	7.	2	35	2		2			Т	
CO3	3	1	3	3	3	-		-	-	-		2			Т	
CO4	3	2	3	3	1	~	New	14.	-	-	1.25	2			Т	
CO5	3	1	3	3	2	-			-	-		1			Т	
	3	H	ligh			_					2	Mediu	ino			

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Summ	iative Assessine	ent	
	Intern	xaminations	Final Examination	
Bloom's Category	IAE - I (7.5)	IAE – II (7.5)	IAE - III (10)	(60)
Romomber	10	10	10	20
Understand	10	10	10	20
Арріу	30	30	30	60
Analyze				Terror
Evaluate				
Create				

20PARE26	High Speed Jet Flows	L	T	P	C
	High Speed Set Flows	3	0	0	3
Nature of Course	Professional Elective				
Pre regulsites	Fluid mechanics and machinery, Propulsion, Rocket an	id space pr	ορυ	Isio	П

The course is intended to

- To make the students learn about various jet control methods, jet acoustics aspects and free shear layer flow theory pertaining to turbulent jets with high speed.
- students will be able to understand various jet control methods, jet acoustics aspects and free shear layer flow theory pertaining to turbulent jets with high speed

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Oulcome	Bloom's Level
001	To Understand about basic of flow properties.	Apply
CC2	To apply the compressible flow theory	Арріу
CO3	To Analysis the performance of jet control	Analysis
CO4	To understand the boundary tayer concept	Apply
CO5	To study the types of noise	Apply

Course contents:

UNIT Untroduction

.

Types of nozzies - byer expanded and under expanded flows - Isentrapic flow through nozzies-Interaction of nozzie flows over adjacent surfaces - Mach disk - Jet flow - types - Numerical problems.

UNIT II Compressible Flow Theory

9

One dimensional compressible fluid flow is flow through variable area passage — nozzles and diffusors—normal and oblique shock waves and calculation of flow and fluid properties across the shocks and expansion fans, interaction of shocks with solid and fluid surface.

UNIT III Jet Control

o

Types of jet control is agle jet, multiljet, co-flow jet, parallel flow jet. Subsonic jets- Mathematical treatment of jet profiles- Theory of Turbulent jets- Mean velocity and mean temperature- Turbulence characteristics of free jets- Mixing Tength- Experimental methods for studying jets and the Techniques used for analysis- Expansion levels of jets- Over expanded, Correctly expanded, Under expanded jets - Control of jets, Centre line decay, Machinumber Profile, Iso-Mach (or iso-baric) contours, Shock cell structure in under expanded and over expanded jets. Machidiscs.

UNIT IV Boundary Layer Concept

9

Boundary Layer – dischacement and momentum trackness- laminar and turbulent boundary layers over flat plates – velocity distribution in turbulent flows over smooth and rough boundaries- laminar sublayer. Shock-boundary layer interactions

UNIT V Jet Acoustics

0

Introduction to Acoustic – Types of noise – Source of generation- Traveling wave solution. Standing wave solution – multi-dimensional acoustics. Noise suppression techniques— applications to problems.

- 1. Ethira;an Rathakrishnan, "Applied Gas Dynamics", John Wiley, NY, 2010.
- 2. Rathakrishnan E., "Gas Dynamics", Prentice Hall of India, New Delhi, 2008
- 3. Liepmann and Roshko, "Elements of Gas Dynamics", John Wiley, NY, 1963.

-00		POs							PSQs						
ÇQs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	*		*	*		2			
COZ	3	2	3	1	1	-	- 2	-	23	74	4	2			
CC3	3	-	3	3	3	-	-	-	-	-	-	2			Г
CC4	3	2	3	3	1		*	-			-	2			
CO5	3	1	3	3	2	-			u.			1			

	Formative assessment	-	
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Summ	iative Assessme	int	
	Interna	Final Examination		
Bloom's Category	IAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	(60)
Rememner	10	-10	10	20
Understand	10	10	10	20
Apply	30	30	30	En
Analyze				
Evaluate				
Creale				

SHAIRMAN BOARD OF STUDIES

	Combustion in Jet and Rocket Engines	L	T	P	C
20PARE27		3	0	0	3
Nature of Course	Professional Elective	011			
Pre requisites	Thermodynamics, Propulsion, Rocket and space propulsion				

The course is intended to

- To impart knowledge to the students and basic principles of cumbustion, types of flames and also make them familiarize the combustion process in yas turbine, ramjet, scram jet and rocket engines.
- 2. Students will learn about the thermodynamics, physics and chemistry of combustion.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about basic of thermodynamics of combustion,	Apply
CQ2	To understand the Fundamental laws of transport phenomena	Apply
CO3	To Analysis the Effects of chemical and physical variables on Burning	Analysis
CO4	To understand the Combustion in gas furbine chambers	Apply
CO5	To understand the chemical rocket	Apply

Course contents:

UNIT I Thermodynamics of Combustion

5

Staichiometry — absolute enthalpy- enthalpy of formation- enthalpy of combustion- laws of thermochemistry- pressure and temperature effect on enthalpy of formation, adiabatic flame temperature, chemical and equilibrium products of combustion

UNIT II Physics and Chemistry of Combustion

.

Fundamental laws of transport phenomena, Conservations Equations. Transport in Turbulent Flow, Basic Reaction Kinetics, Elementary reactions, Chain reactions, Multistep reactions, simplification of reaction mechanism. Global kinetics

UNIT III Premixed and Diffused Flames

13

One dimensional combustion wave. Laminar premixed flame, Burning velocity measurement methods, Effects of chemical and physical variables on Burning velocity, Flame extinction, Ignition, Flame stabilizations, Turbulent Premixed flame. Gaseous Jet diffusion flame. Liquid fuel combustion, Atomizetion, Spray Combustion, Solid fuel combustion.

UNIT IV Combustion in Gas Turbine, Ramjet and Scramjet

8

Combustion in gas furbine chambers, recirculation, combustion efficiency, flame holders, subsonic combustion in ranget, supersonic combustion in scramjet. Subsonic and supersonic combustion controlled by decision mixing and heat convection.

UNIT V Combustion in Chemical Rocket

5

Combustion in liquid propellant rockets, Combustion of solid propellants, application of laminar flame theory to the burning of homogeneous propellants, Combustion in hybrid rockets, combustion instability in rockets

- 1. D. P. Mishra, "Fundamentals of Combustion", Prentice Hall of India, New Delhi, 2010.
- H. S. Mukunda, "Understanding Combustion", 2nd edition, Orient Blackswan, 2009.
- 3. Kuo K.K "Principles of Combustion" John Wiley and Sons, 2005.
- 4. Warren C. Strahle, 'An Introduction to Combustion', Taylor & Francis, 1993.

co-		POs							PSOs						
COş	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1
CO1	1	2	3	3	3				-	*	*	2			
CO2	3	2	3	1	•				23	-	*	2			
CD3	3	1	3	3	3				-			2			
CD4	3	2	3	3	1		*	-	8	-		2			
CO5	3	1	3	3	2		2	-81	21	12	-	1			
	3		ligh			-					2	Mediu	m		

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Allendance	5	

	Summ	ative Assessme	ent	
	Interna	Final Examination		
Bloom's Category	IAE -1 (7.5)	IAE - II (7.5)	IAE - III (10)	(60)
Remember	10	10	10	20
Understand	10	- 10	10	20
Apply	30	30	30	60
Analyze		84 -		
Evaluate				
Create				

CHAIRMAN-BOARD OF STUDIES

	Drawallas Agendynamics	L	Т	P	C
20PARE28	Propeller Aerodynamics		D	0	3
Nature of Course	Professional Elective				
Pre requisites	Thermodynamics, Propulsion, Aerodynamics, Rocket a propulsion	nd space			

The course is intended to

- To impart knowledge to the students and basic principles of air screw theory, momentum theory and simulation approach.
- Students will gain knowledge on various Propeller theories and propeller simulations.

Course Outcomes

On successful completion of the course, students will be able to

CO. No	Course Outcome	Bloom's Level
001	To Understand about air screw theory.	Apply
C O 2	To understand the Ideal efficiency of a propeller	Αμρίγ
CO3	To Analysis the Effects of Blade Element Theory	Analysis
GO4	To study and understand the vortex theory	Apply
CO5	To Analysis the simulation approach of propellers	Apoly

Course contents:

UNIT I Air Screw Theory

8

Introduction – Non-Dimensional Coefficients – Air screw design – development of airscrew theory, The actuator- disc theory, working states of rotor, optimum rotor, Efficiency of rotor

UNIT II Axial Momentum Theory

14

Rankine-Froude Theory- Tha momentum Equation – Ideal officiency of a propeller. The general momentum freezy- General equations – constant directations approximate solution- minimum loss of energy- constant efficiency. Propeller officiency- Energy equation – approximate solutions efficiency-numerical results

UNIT III Blade Element Theory

d

Primitive Blade Element Theory- Efficiency of the prade element. Blade interface- The vortex system of a propeller- induced velocity- The arfoil characteristics- Multi-plane Interference- rascade of airfoils – Airfoil characteristics in a cascade.

UNIT IV Vartex Theory

9

Propeller blades- Energy and Momentum- Propeller characteristics – The application of the Vortex theory- The effect of solidity and pitch – Approximate method of solution- Effective Aspect ratio of the blades. Propellers of highest officiency- Minimum loss of energy- Lightly loaded Propellers-Effect of profile drag- The effect of number of blades- Application of Prandil's Formula.

UNIT V Experimental and Simulation Approach of Propellers

¢

Experimental Methods- Wind tunnel interference- Thrust and Torque distribution. Scale effect-Compressibility Effect. Basics of propeller simulations- Domain selection- Grid independency study-Turbulence mode: investigation

- 1. Durand, W.F., "Applied Aerodynamics- Volume IV", Stanford University, California, 2010.
- 2. "Madeling Propeller Flow-Fields Using CFD" AIAA 2008-402.
- Seddon, J., 'Basic Helicopter Aerodynamics', BSP Professional Books, Oxford London, 2005.
- 4. Kerwin, Justin, "lecture Notes on Hydrofoils and Propellers", Cambridge, 2001.

co-		POs											PSQs		
COs	1_	2	3	4	5	6	7	8 9 10 11 12					1	2	1
001	1	2	3	3	3			-	*	+		2			
002	3	2	3	1	1	:30	-	-	_ <u></u>	-	្ទ	2			
CO3	3	î	3	3	3	800	183		*3	29	T e	2			Г
CO4	3	2	3	3	•		*	-	*		-	2			T
CO5	3	1	3	3	2							1			
	3	H	ligh								2	Mediu	ım		

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Summ	ative Assessme	int			
	Interna	al Assessment f	Examinations	Final Examination		
Bloom's Category	JAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	(60)		
Remember	10	ŧ0	10	20		
Understand	10	10	10	20		
Арріу	30	30	30	60		
Analyze						
Evaluate						
Create						

CHAIRMAN-BOARD OF STUDIES

200 4 0 5 2 0	Aircraft Guidance and Control	L	Т	Þ	С
20PARE29	All City Galaniae and Galife		0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aircraft design, Air traffic control, Flements of aeronautics				

The course is intended to

- To impart knowledge to the students and basic principles of aircraft guidance and control
- Students will learn about longitudinal and lateral autopilot, guidance of missile and launch vehicles.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
COL	To Understand about hasic of Guidance and control	Apply
CO2	To understand the need for automatic flight control systems	Apply
СОЗ	To Analysis the performance of Pitch Orientation Control system	Analysis
CO4	To understand the concept of autopilot	Арріу
CO5	To understand the missing and launuh vehicle guidance	Apply

Course contents:

UNIT I Introduction

4

Introduction to Guidance and control - definition, Historical background

UNIT II Augmentation Systems

7

Need for automatic flight control systems. Stability augmentation systems, control augmentation systems, Gain scheduling concepts.

UNIT III Longitudinal Autopilot

t2

Displacement Autopilot-Pitch Orientation Control system, Acceleration Control System, Clirle Slope Coupler and Automatic Flare Control and Flight path stabilization, Longitudinal control law design using back stepping algorithm.

UNIT IV Lateral Autopilot

10

Damping of the Dutch Roll, Methods of Obtaining Coordination, Yaw Grientation Confrol system turn compensation, Automatic lateral Beam Guidance. Introduction to Fly-by-wire flight control systems, Lateral control law design using back stepping algorithm.

UNIT V Missile and Launch Vehicle Guidance

12

Operating principles and design of guidance laws, noming guidance laws, short range. Medium range and BVR missiles, Launch Vehicle-Introduction, Mission requirements, Implicit guidance schemes. Explicit guidance, Q quidance schemes

- 1. Collinson R.P.G, 'Introduction to Avionics', Chapman and Hall, Indla. 1996.
- Stevens B.L. & Lewis F.L. 'Aircraft control & simulation', John Wiley Sons, New York, 1992
- Blake Lock, J.H 'Automatic control of Aircraft and missiles', John Wiley Sons, New York, 1990.
- 4. Nelson R.C 'Flight stability & Automatic Control', McGraw Hill, 1989.
- 5. Garnel P. & East D.J., 'Guided Weapon control systems', Pergamon Press, Oxford, 1977,
- 6. Bernad Etikin. 'Dynamic of flight stability and control', John Wiley, 1972.

00-						Þ	Ós						PSOs			
COs	1	2	3	4	5	ô	7	8	9	10	11	12	1 2			
CO1	1	2	3	3	3	•	75.	-	83	18	•	2				
CO2	3	2	3	1	1			-	*	-	-	2			Г	
CO3	3	1	3	3	3		7	-	-57		-	2		-		
CO4	3	2	3	3	1		-			1	. 17	2				
CO5	3	1	3	3	2	-	-	-	2.	-	-	1				
	3	3 High									2	Medi	ım			

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Futorial Class / Assignment	5	15
	Attendance	5	

	Şumm	etive Assessme	int			
	Interna	al Assessment E	Examinations	Final Examination		
Bloom's Category	IAE ~ I (7.5)	(AE - II (7.5)	IAE - III (10)	(60)		
Remember	10	10	10	20		
Understand	10	10	1D	20		
Apply	30	30	30	60		
Analyze						
Evaluale 🔪						
Creale						

200 40000	Avionics	L	Т	P	C
20PARE30	Avionics	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Control Engineering, Aircraft design, Air traffic control, aerunautics	Elements o	f		

The course is intended to

- 1. To introduce the basic of avionos and its need for civil and military alrerafts
- To impart knowledge about the avionic architecture and various avionics data buses.
- 3 To gain more knowledge on various avionics subsystems.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To introduce the nasic of avionics and its need for civil and military aircrafts	Apply
C O 2	To impart knowledge about the avionic architecture and various avionics data buses	Арріу
CO3	To study about Control and display technologies	Apply
C04	To gaining knowledge and analysis of navigation systems	Analysis
CO5	To gain more knowledge on various avionics subsystems	Apply

Course contents:

UNIT I Introduction to Avionics

Need for everios in divit and initiary aircraft and space systems – integrated avionics and weapon systems—typical avionics subsystems, design, technologies – Introduction to digital computer and memorics.

UNIT II Digital Avionics Architecture

9

Avianios system architecture – data buses – MIL-S1D-15533 – ARINC – 423, ARINC-429 – ARINC – 629.

UNIT III Flight Decks and Cockpits

d

Control and display technologies: CRT_LED, LCD, Et_ and piasma panel – Touch screen – Direct voice input (DVI) – Civil and Military Cockpits IMFDS, HDD, MFK, HOTAS.

UNIT IV Introduction to Navigation Systems

9

Radio navigation – ADF, DME, VOR, LORAN, DECCA, OMEGA TACAN, ILS. MLS, Hyperbolic navigation systems, Ground Control Approach Systems, Dead reckoning navigation systems, Duppler navigational and inertial navigation—Inertial Navigation Systems (INS) – INS block diagram – Satellite navigation systems – Traffic Alert and Collision Avoidance System (TCAS), GPS

UNIT V Air Data Systems and Auto Pilot

-0

Air data quantifies – Altitude, Air speed, Vertical speed, Mach meter, Total air temperature, Mach warning, Altitude warning – Auto pilot – Basic principles, Longitudinal and lateral auto pilot

- 1. Albert Helfrick, D., "Principles of Avionics", Avionics Communications Inc., 2004
- 2. Pallet F,H J "Aircraft Instruments and Integrated Systems", Longman Scientific 2002,
- 3. Spitzer, C.R. "The Avionics Hand Book", CRC Press, 2000.
- Collinson, R.P.G. "Introduction to Avionics", Chapman and Hall, 1996.
- Spitzer, C.R. "Digital Avionics Systems", Prentice-Hall, Englewood Cliffs, N.J., U.S.A., 1993
- Middleton, D.H., Ed., "Avionics systems, Longman Scientific and Technical". Longman. Group UK Ltd., England, 1989.

-		POs												PSO ₃		
CÓs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	2	3	3	3		- 61	S.#		2.0	-	2				
ÇQ2	3	2	3	1	1		*		•	175	*	2				
003	3	1	3	3	3	27	-		-		- 27	2				
CC4	3	2	3	3	1	*	*	-			-	2				
CO5	3	1	3	3	2	-	-	14	-	-	-	1				
	3 H	ligh			-					2	Medic	וליון				

Formative assessment						
Bloom's Level	Assessment Component	Marks	Total marks			
Remember	Online Quiz	5				
Understand	Tutorial Class / Assignment	5	15			
	Attendance	5				

	Summ	ative Assessme	ent		
	Interna	Final Examination			
Bloom's Category	IAE -1 (7.5)	IAE - II (7.5)	(AE - III (10)	(60)	
Remember	10	10	10	20	
Understand	10	10	10	20	
Apply	30	30	30	60	
Analyze					
Evaluate					
Create					

CHAIRMAN BOARD OF STUDIES

300 10004	Mind Tuppel Techniques	L	Τ	Р	Ç
20PARE31	Wind Tunnel Techniques	3	0	0	3
Nature of Course	Professional Elective	1/10			
Pre regulsites	Aerodynamics, Elements of aeronautics				

The course is intended to

- To introduce the basic of avionics and its need for civil and military aircrafts.
- To impart knowledge about the avionic architecture and various avionics data buses.
- 3. To gain more knowledge on various avionins subsystems.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bioom's Level
CO1	Learn the basic concept of Wind tunnel and its principles	Apply
CO2	Understand the various types of wind tunnels and its functions	Apply
0.03	Ability to learn testing of wind funnel and calibration	Apply
ÇO4	Acquire the knowledge of measurement techniques.	Analysis
CO5	Learn the advanced types of wind tunnel.	Apply

Course contents:

UNIT Fintroduction to Wind Tunnels

0

Principles of Model Testing, Wind Tunnels and its functional parts, Non-dimensional numbers. Scale effect, Geometric Kinematic and Dynamic similarities.

UNIT II Types and Functions of Wind Tunnels

€

Classification and types special problems of testing in subsonic, transonic, supersonic and hypersonic speed regions Layouts

UNIT III Calibration of Wind Tunnels

Test section speed, Horizontal buoyancy, Flow angularities. Flow uniformity & furbulence measurements, associated instrumentation – Calibration of subsonic & supersonic tunnels.

UNIT IV Conventional measurement techniques

4

Force measurements and measuring systems. Multi component internal and external balances. Pressure measurement system - Steady and Unsteady Pressure- single and multiple measurements - Velocity measurements, Intrusive and Non-intrusive methods. Particle image velocimetry.

UNIT V Advanced wind tunnel techniques

0

Intake tests store carriage and separation tests, unsteady force and pressure measurements, wind tunnel model design. Hot wire anemometer working and principle

Total: 45 periods

- Rae, W.H. and Pope, A., "Low Speed Wind Tunnel Testing", Wiley India Pvt Ltd; Thirdedition (16 March 2010) ISBN-13: 978-8126525683
- Lecture course on Advanced Flow diagnostic techniques 17-19 September 2008 NAL, Bangalore
- Pope, A., and Goin, L. "High Speed Wind Tunnel Testing", Krieger Pub Co. 2002.
- 4 NAL-UNI Lecture Series 12:" Experimental Aerodynamics", NAL SP 98 01 April 1998.

		Outcomes (PSO) POs									PSOs				
COs	1	2	3	4	5	ť	1	8	9	10	11	12	1	2	13
CO1	1	2	3	3	3	-	-	-	-	-		2			
CO2	3	2	3	1	1	-		-			-	2			T
003	3	1	3	3	. 3							2			T
CO4	3	2	3	3	1	-		-	73		-	2			Т
CO5 3	1	3	3	2	3.00					-	1			T	

Formative assessment						
Bloom's Lavel	Assessment Component	Marks	Total marks			
Remember	Ontine Guiz	5				
Understand	Futorial Class / Assignment	5	15			
	Attendance	5				

Summative Assessment							
	Interna	Final Examination					
Bloom's Category	JAE - I (7.5)	IAE - II (7.5)	IAE - III (10)	(60)			
Remember	10	10	10	20			
Understand	10	10	10	20			
Apply	30	30	30	60			
Analyze							
Evaluate							
Oreald							

CHAIRMAN-BOARD OF STUDIES