

EXCEL ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai Accredited by NBA, NAAC with "A+" and Recognised by UGC (2f &12B) KOMARAPALAYAM – 637303

DEPARTMENT OF AERONAUTICAL ENGINEERING M.E. AERONAUTICAL ENGINEERING REGULATION 2022 CHOICE BASED CREDIT SYSTEM I TO IV SEMESTERS CURRICULAM

		I - SEMES	STER							
Code No.	Course	Cotogory	Periods / Week			Credits	Maximum Marks			
Code No.	Course	Category	L	Т	Р	Credits	CA	FE	Total	
Theory Cou	rse(s)									
22PMA101	Advanced Mathematical Methods	FC	3	2	0	4	40	60	100	
22PAR101	Advanced Propulsion System	PC	3	0	0	3	40	60	100	
22PAR102	Theory of Vibrations	PC	3	0	0	3	40	60	100	
22PAREXX	Professional Elective – I	PE	3	0	0	3	40	60	100	
Theory with	Practical Course(s)									
22PAR103	Advanced Aerodynamics	PC	3	0	2	4	50	50	100	
22PAR104	Advanced Structural Mechanics	PC	3	0	2	4	50	50	100	
Employabili	ty Enhancement Course									
22PAR105	Technical Presentation Seminar	МС	0	0	2	1	100	0	100	
	TOTAL 18 2 6 22 360 340 700								700	

		II- SEME	STEF	₹					
Code No.	Course		Peri	ods/	Week	Credits	Max	imum M	arks
	Course	Category	L	Т	Р	Credits	CA	FE	Total
Theory Cou									
22PAR201	Advanced UAV Design	PC	3	0	0	3	40	60	100
22PAR202	Aircraft Flight Dynamics	PC	3	0	0	3	40	60	100
22PAREXX	Professional Elective – II	PE	3	0	0	3	40	60	100
22PAREXX	Professional Elective – III	PE	3	0	0	3	40	60	100
Theory with	Practical Course(s)								
22PAR203	Finite Element Method for Aircraft structure Design	PC	3	0	2	4	50	50	100
22PAR204	Computational Fluid Dynamics for Aerodynamics	PC	3	0	2	4	50	50	100
Employability Enhancement Course									
22PAR205	Technical Presentation Seminar	МС	0	0	2	1	100	0	100

	Total		18	0	6	21	360	340	700	
		III- SEME	STER			•				
Code No.	Course	Category	F	Period Wee	_	Credits	Maximum Marks			
			L	Т	Р		CA	FE	Total	
Theory Cour	se(s)									
22PEE301	Research Methodology and Intellectual Property Rights	PC	3	0	0	3	40	60	100	
22PAREXX	Professional Elective –IV	PE	3	0	0	3	40	60	100	
22PAREXX	Professional Elective- V	PE	3	0	0	3	40	60	100	
Employabilit	y Enhancement Course									
22PAR301	Project Phase – I	EEC	0	0	12	6	50	50	100	
Mandatory Course										
22PAR302 Internship Training		МС	2	2 Wee	ks	0	100	0	100	
	Total			0	12	15	230	170	400	

		IV- SEME	STER							
Code No.	Course	Category	Periods / Week			Credits	Maximum Marks			
			L	Т	Р		CA	FE	Total	
Employability	nployability Enhancement Course									
22PAR401	Project Phase – II	EEC	0	0	24	12	50	50	100	
	Total		0	0	24	12	50	50	100	

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE = 70 CREDITS SUMMARY

S. No	Cotogony	CRED	ITS PER	RSEMES	TER	Total Credit	Credits in %
3. NO	Category	I	II	III	IV	(AICTE)	Credits III %
1	FC	4				4	6
2	PC	14	14	3		31	44
3	PE	3	6	6		15	21
4	МС			0		0	0
5	EEC	1	1	6	12	20	29
	Total	22	21	15	12	70	100

FC - Foundation Course

PC - Professional Core

PE - Professional Electives

EEC - Employability Enhancement Courses

MC - Mandatory Courses (Non-Credit Courses)

CA - Continuous Assessment

FE - Final Examination

	LIST OF PROFI	ESSIONAL		CTIVE	-				
Code No.		Category		eriod Week	s/	Credits	Ма	ximun	n Marks
Code No.	Oourse		L	Т	Р	Orealts	CA	FE	Total
	I – SEME	STER (Ele	ctive-	l)					
22PARE01	Boundary Layer Theory	PE	3	0	0	3	40	60	100
22PARE02	Aircraft Design	PE	3	0	0	3	40	60	100
22PARE03	Theory of Elasticity	PE	3	0	0	3	40	60	100
22PARE04	Rocketry and Space Mechanics	PE	3	0	0	3	40	60	100
22PARE05	Experimental Stress Analysis	PE	3	0	0	3	40	60	100
	II- SEMEST	ΓER (Elect	ive-II	& III)				"	
22PARE11	Theory of Plates and Shells	PE	3	0	0	3	40	60	100
22PARE12	High Temperature Problems in Structures	PE	3	0	0	3	40	60	100
22PARE13	Fatigue and Fracture Mechanics	PE	3	0	0	3	40	60	100
22PARE14	Industrial Aerodynamics	PE	3	0	0	3	40	60	100
22PARE15	Hypersonic Aerodynamics	PE	3	0	0	3	40	60	100
22PARE16	Computational Heat Transfer	PE	3	0	0	3	40	60	100
22PARE17	Wind Power Engineering	PE	3	0	0	3	40	60	100
22PARE18	Advanced Composite Materials and Structures	PE	3	0	0	3	40	60	100
	III- SEMEST	ΓER (Elect	ive-IV	' & V)					
22PARE21	Aero Elasticity	PE	3	0	0	3	40	60	100
22PARE22	Design and Analysis of Turbomachines	PE	3	0	0	3	40	60	100
22PARE23	Helicopter Aerodynamics	PE	3	0	0	3	40	60	100
22PARE24	Experimental Aerodynamics	PE	3	0	0	3	40	60	100
22PARE25	High Temperature Gas Dynamics	PE	3	0	0	3	40	60	100
22PARE26	High Speed Jet Flows	PE	3	0	0	3	40	60	100
22PARE27	Combustion in Jet and Rocket Engines	PE	3	0	0	3	40	60	100
22PARE28	Propeller Aerodynamics	PE	3	0	0	3	40	60	100
	Aircraft Guidance and Control	PE	3	0	0	3	40	60	100
22PARE29									
22PARE29 22PARE30	Avionics	PE	3	0	0	3	40	60	100

2201	4 4 0 4		Advanced Mathematical Matheda	L	Т	Р	С
ZZPIV	Nature of Course Foundation Course	3	2	0	4		
Natur	re of Co	urse	Foundation Course				
Pre re	equisite	s	Aircraft structures ,Propulsion, Avionics				

The course is intended to

- 1. The main objective of this course is to provide the student with a repertoire of mathematical methods that are essential to the solution of advanced problems encountered in the fields of applied physics and engineering.
- 2. This course covers a broad spectrum of mathematical techniques such as Laplace Transform, Fourier Transform, Calculus of Variations, Conformal Mapping and Tensor Analysis.
- 3. Application of these topics to the solution of problems in physics and engineering is stressed.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Application of Laplace and Fourier transforms to initial value, initial—boundary value and boundary value problems in Partial Differential Equations	Apply
CO2	Maximizing and minimizing the functional that occur in various branches of Engineering Disciplines	Apply
CO3	Construct conformal mappings between various domains and use of conformal mapping in studying problems in physics and engineering particularly to fluid flow and heat flow problems	
CO4	Understand tensor algebra and its applications in applied sciences and engineering and develops ability to solve mathematical problems involving tensors.	l I
CO5	Competently use tensor analysis as a tool in the field of applied sciences and related fields.	Apply

Course contents:

UNIT I Laplace Transform Techniques For Partial Differential Equations

12

Laplace transform: Definitions — Properties — Transform error function — Bessel's function - Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation.

UNIT II Fourier Transform Techniques For Partial Differential Equations

12

Fourier transform: Definitions — Properties — Transform of elementary functions — Dirac delta function — Convolution theorem — Parseval's identity — Solutions to partial differential equations: Heat equation — Wave equation — Laplace and Poisson's equations.

UNIT III Calculus of Variations

12

Concept of variation and its properties – Euler"s equation – Functional dependant on first and higher order derivatives – Functionals dependant on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems – Direct methods – Ritz and Kantorovich methods.

UNIT IV Conformal Mapping and Applications

Introduction to conformal mappings and bilinear transformations – Schwarz Christoffel transformation – Transformation of boundaries in parametric form – Physical applications: Fluid flow and heat flow problems.

UNIT V Tensor Analysis

12

12

Summation convention – Contravariant and covariant vectors – Contraction of tensors – Inner product — Quotient law — Metric tensor — Christoffel symbols — Covariant differentiation — Gradient-Divergence and curl.

Total: 60 Periods

References

- 1. Andrews L.C. and Shivamoggi, B., "Integral Transforms for Engineers", Prentice Hallof India Pvt. Ltd., New Delhi, 2003.
- 2. Elsgolc, L.D., "Calculus of Variations", Dover Publications Inc., New York, 2007.
- 3. Mathews, J. H., and Howell, R.W., "Complex Analysis for Mathematics and Engineering", 5th Edition, Jones and Bartlett Publishers, 2006.
- 4. Kay, D. C., "Tensor Calculus", Schaum's Outline Series, Tata McGraw Hill Edition, 2014.
- 5. Naveen Kumar, "An Elementary Course on Variational Problems in Calculus ", Narosa Publishing House, 2005.
- 6. Saff, E.B and Snider, A.D, "Fundamentals of Complex Analysis with Applications in Engineering, Science and Mathematics", 3rd Edition, Pearson Education, New Delhi, 2014.

Ma	apping	of Co	ourse	Outco	mes (ith Process		n Outc O)	omes	(PO) I	Progra	am Spe	ecific	
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	-	3	1	1	-	-	-	-	-	-	2			
CO2	3	-	3	3	3	-	-	-	-	-	-	2			
CO3	3	-	3	3	1	-	-	-	-	-	-	2			
CO4	3	-	3	3	2	-	-	-	-	-	-	1			
CO5	3	-	3	3	3	-	-	-	-	-	-	1			
	3	F	ligh			-					2	N	1edium	1	

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Sumn	native Assessm	nent	
	Internal A	ssessment Exa		
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze				
Evaluate				
Create				

22PAR101	Advanced Propulsion System	L	Т	Р	С
ZZI AKTOT	Advanced Frepulsion System	3	0	0	3
Nature of Course	Professional Core				
Pre requisites	Aircraft Propulsion				

The course is intended to

- 1. To impart knowledge to students about fundamental principles of aircraft hypersonic and rocket propulsion
- 2. To be able to describe the principal design parameters and constraints that set the performance of gas turbine engines and performance parameters.
- 3. Understanding the workings of multistage compressor or turbine, and to be able to use velocity triangles and the Euler Turbine Equation to estimate the performance of a compressor or turbine stage.
- 4. To impart, make students understand applications of Propeller Theory.
- 5. To be able to be familiar with electric nuclear and solar space propulsion methods.

Course Outcomes

On successful completion of the course, students will be able

CO. No.	Course Outcome	Bloom'sLevel
CO1	To able to analyze the overall performance of propulsive systems	Apply
CO2	To explain the design parameters and constraints for Propeller	Apply
CO3	To recognize the working and performance characteristics of Engine Components	Apply
CO4	To explain the design parameters and constraints for Compressor	Apply
CO5	To familiar with electric nuclear and solar space propulsion methods.	Understand

Course contents:

UNIT I Elements of Aircraft Propulsion

C

Classification of power plants - Methods of aircraft propulsion – Propulsive efficiency – Specific fuelconsumption - Thrust and power- Factors affecting thrust and power- Illustration of working of Gas turbine engine - Characteristics of turboprop, turbofan and turbojet, Ram jet, Scram jet – Methodsof Thrust augmentation.

UNIT II Propeller Theory

9

Momentum theory, Blade element theory, combined blade element and momentum theory, propeller power losses, propeller performance parameters, prediction of static thrust- and in flight, negative thrust, prop fans, ducted propellers, propeller noise, propeller selection, propeller charts.

Subsonic and supersonic inlets – Relation between minimum area ratio and external deceleration ratio – Starting problem in supersonic inlets –Modes of inlet operation, jet nozzle – Efficiencies – Over expanded, under and optimum expansion in nozzles – Thrust reversal. Classification of Combustion chambers - Combustion chamber performance – Flame tube cooling – Flame stabilization.

UNIT IV Axial Flow Compressors, Fans and Turbines

9

Introduction to centrifugal compressors- Axial flow compressor- geometry- twin spools- three spools- stage analysis- velocity polygons- degree of reaction – radial equilibrium theory-performance maps- axial flow turbines- geometry- velocity polygons- stage analysis-performance maps- thermal limit of blades and vanes.

UNIT V Rocket and Electric Propulsion

9

Introduction to rocket propulsion – Reaction principle – Thrust equation – Classification of rockets based on propellants used – solid, liquid and hybrid – Comparison of these engines with special reference to rocket performance – electric propulsion – classification- electro thermal – electro static – electromagnetic thrusters- geometries of lon thrusters- beam/plume characteristics – hall thrusters.

Total: 45 Periods

Text books

- 1. Hill, P.G. & Peterson, C.R. "Mechanics & Thermodynamics of Propulsion" Pearson education(2009)
- 2. Jack Mattingly, Elements of Gas Turbine Propulsion, Tata McGraw Hill Education (India) Pvt Ltd,1st Edition, 2005

References

- 1. Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H, Gas Turbine Theory, Longman, 1989
- 2. G.P.Sutton, "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 5th Edition, 1986.
- 3. Hill, P.G. and Peterson, C.R. Mechanics and Thermodynamics of Propulsion, Addison WesleyLongman Inc. 1999
- 4. W6.. Mathur, M.L., and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", StandardPublishers and Distributors, Delhi, 2014.

Mapping o	of Cours	e Out	come	s (CO			ramm s (PS		come	s (PO) Prog	Jramme	Spe	cific		
CO-	Pos													PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12				
CO1	1	1	2	2	-	-	-	-	2	-	2	-	-	-	-	
CO2	1	2	2	2	-	-	-	-	2	-	2	-	-	-	-	
CO3	2	3	2	2	-	-	-	-	2	-	2	-	-	-	_	
CO4	1	2	2	2	-	-	-	-	2	-	2	-	-	-	-	
CO5	1	2	2	2	-	-	-	-	2	-	2	-	-	-	-	
	3	High				2	Mediu	ım			1	Lo)W			

	Formative assessment										
loom's Level	Assessment Component	Marks	Total marks								
Remember	Online Quiz	5									
Understand	Tutorial Class / Assignment	5	15								
	Attendance	5									

	Sumn	native Assessm	nent			
	Internal A	ssessment Exa				
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)		
Remember	10	10	10	20		
Understand	10	10	10	20		
Apply	30	30	30	60		
Analyze						
Evaluate						
Create						

22PAR102	Theory of Vibrations	L	Т	Р	С		
221 71102	Theory of Vibrations	3	0	0	3		
Nature of Course	Nature of Course Professional core						
Pre requisites Mechanics of machines, aero elasticity, Basic of mechan vibrations							

The course is intended to

- 1. To study the effect of time dependent forces on mechanical systems and to get the natural characteristics of system with more degree of freedom systems.
- 2. To study the aero elastic effects of aircraft wing.
- 3. students will learn the dynamic behavior of different aircraft components and the interaction among the aerodynamic, elastic and inertia forces

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom'sLevel
CO1	Explain about the free, forced, damped, undamped and vibrationmeasuring instrument.	Apply
CO2	Calculate natural frequency for two Degrees and Multi degrees ofFreedom Systems.	Apply
CO3	Measure the frequency of a continuous system.	Apply
CO4	Estimate the natural frequency of a system using approximate methods.	Apply
CO5	Identify the effects of vibrations on aircraft structures and the change in aerodynamic property of the structures	Understand

Course contents:

UNIT I Single Degree of Freedom Systems

10

Simple harmonic motion, definition of terminologies, Newton's Laws, D'Alembert's principle, Energy methods. Free and forced vibrations with and without damping, base excitation, and vibration measuring instruments.

UNIT II Multi-Degrees of Freedom Systems

12

Two degrees of freedom systems, Static and dynamic couplings, eigen values, eigen vectors and orthogonality conditions of eigen vectors, Vibration absorber, Principal coordinates, Principal modes. Hamilton's Principle, Lagrange's equation and its applications.

UNIT III Vibration of Elastic Bodies

10

Transverse vibrations of strings, Longitudinal, Lateral and Torsional vibrations. Approximate methods for calculating natural frequencies.

UNIT IV Eigen Value Problems & Dynamic Response of Large Systems

8

Eigen value extraction methods – Subspace hydration method, Lanczos method – Eigen value reduction method – Dynamic response of large systems – Implicit and explicit methods.

UNIT V Elements of Aeroelasticity

Aeroelastic problems – Collar"s triangle of forces – Wing divergence – Aileron control reversal – Flutter.

Total: 45 Periods

5

References

- 1. F.S. Tse., I.F. Morse and R.T. Hinkle, "Mechanical Vibrations", Prentice-Hall of India, 2008.
- 2. Fung, Y.C., "An Introduction to the Theory of Aeroelasticity", John Wiley & Sons Inc., New York, 2005.
- 3. Kenneth G. McConnell, Paulo S. Varoto Vibration Testing: Theory and Practice 2nd Edition, 2008
- 4. Meirovitch, L. "Elements of Vibration Analysis", McGraw-Hill Inc., 2006.
- 5. Rao.J.S. and Gupta.K. "Theory and Practice of Mechanical Vibrations", Wiley EasternLtd., New Delhi, 1999.
- 6. Thomson W.T, Marie Dillon Dahleh, "Theory of Vibrations with Applications", Prentice Hall, 1997
- 7. Timoshenko, S. "Vibration Problems in Engineering", John Wiley & Sons, Inc., 1987.

00-		Pos													
COs	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	1	1	-	-	2	1	1	-	-	1	2			
CO2	3	-	1	1	-	2	1	1	-	-	1	2			
CO3	3	-	1	1	-	2	1	2	-	-	1	2			
CO4	2	_	1	1	1	2	1	1		-	1	1			
CO5	1	_	_	1	1	2	1	2	-	_	1	1			
	3		∣ - High	1	<u> </u>	2	l	∠ Med		_	1		_OW		

	Formative assessment										
Bloom's Level	Assessment Component	Marks	Total marks								
Remember	Online Quiz	5									
Understand	Tutorial Class / Assignment	5	15								
	Attendance	5									

	Summat	ive Assessmer	nt				
	Internal A						
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)			
Remember	10	10	10	20			
Understand	10	10	10	20			
Apply	30	30	30	60			
Analyze							
Evaluate							
Create							

22PAR103		Advanced Aerodynamics	L	Т	Р	С					
22PAR 103		Advanced Aerodynamics	3	0	2	4					
Nature of Cour	se	Professional core									
Pre requisites		Fluid mechanics and characteristics, boundary layer conce Elementsof aeronautics	ept,								

The course is intended to

- To introduce the students the fundamental concepts and topic related to aerodynamics of flight vehicles like fundamental forms of flow, aerodynamic coefficient, incompressible and compressible flow theories, viscous flow measurements and various configuration of aircraft and wings.
- 2. Students will understand the behaviour of airflow over bodies with particular emphasis on airfoil sections in the incompressible flow regime.
- 3. Upon completion of the course, students will be in a position to use wind tunnel for pressure and force measurements on various models

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Rephrase the concepts of low speed elementary flows and their combinationsby framing the fundamental governing equations.	Apply
CO2	Illustrate two-dimensional inviscid incompressible flow and vortex flow andpredict the circulation around the aerodynamic bodies.	Apply
CO3	Infer the theory of airfoil and its characteristics along with the potential functionsand transformations.	Apply
CO4	Determine the aerodynamic forces and moments and their coefficients as wellas center of pressure using subsonic wing theory.	Apply
CO5	Experiment with the zones of boundary layer and determine the total drag and its coefficient for flow around the body.	Apply

Course contents:

UNIT I Introduction to Aerodynamics

Hot air balloon and aircrafts, Various types of airplanes, Wings and airfoils, lift and Drag, Centre of pressure and aerodynamic centre, Coefficient of pressure, moment coefficient, Continuity and Momentum equations, Point source and sink, doublet, Free and Forced Vortex, Uniform parallel flow, combination of basic flows, Pressure and Velocity distributions on bodies with and without circulation in ideal and real fluid flows, Magnus effect

UNIT II Incompressible Flow Theory

9

Conformal Transformation, Kutta condition, Karman – Trefftz profiles, Thin aerofoil Theory and its applications. Vortex line, Horse shoe vortex, Biot - Savart law, lifting line theory

UNIT III Compressible Flow Theory

Compressibility, Isentropic flow through nozzles, shocks and expansion waves, Rayleigh and Fanno Flow, Potential equation for compressible flow, small perturbation theory, Prandtl- Glauert Rule, Linearised supersonic flow, Method of characteristics

UNIT IV Airfoils, Wings and Airplane Configuration In High Speed Flows

9

Critical Mach number, Drag divergence Mach number, Shock stall, super critical airfoils, Transonic area rule, Swept wings (ASW and FSW), supersonic airfoils, wave drag, delta wings, Design considerations for supersonic airplanes

UNIT V Viscous Flow and Flow Measurements

9

Basics of viscous flow theory – Boundary Layer – Displacement, momentum and Energy Thickness – Laminar and Turbulent boundary layers – Boundary layer over flat plate – Blasius Solution Introduction to wind tunnel, Types of wind tunnel, Scale model, Important testing parameters, Calibration of test section, Measurement of force, moment and pressure, scale effect, Flow visualization techniques

Total: 45 Periods

Practical

List of experiments

- 1. Calibration of subsonic wind tunnel
- 2. Pressure distribution over a smooth and rough cylinder
- 3. Pressure distribution over a symmetric aerofoil section
- 4. Pressure distribution over a cambered aerofoil section
- 5. Force and moment measurements using wind tunnel balance
- 6. Pressure distribution over a wing of symmetric aerofoil section
- 7. Pressure distribution over a wing of cambered aerofoil section
- 8. Flow visualization studies in incompressible flows
- 9. Calibration of supersonic wind tunnel
- 10. Supersonic flow visualization studies

Total: 30 Periods

References

- 1. E.L. Houghton and N.B. Caruthers, Aerodynamics for Engineering Students, Edward Arnold Publishers Ltd., London (First Indian Edition), 1988
- 2. J.D. Anderson, "Fundamentals of Aerodynamics", McGraw-Hill Book Co., New York, 1985.
- 3. Rathakrishnan.E., Gas Dynamics, Prentice Hall of India, 1995.
- 4. Shapiro, A.H., Dynamics & Thermodynamics of Compressible Fluid Flow, Ronald Press, 1982.
- 5. W.H. Rae and A. Pope, "Low speed Wind Tunnel Testing", John Wiley Publications, 1984.
- 6. Zucrow, M.J., and Anderson, J.D., Elements of gas dynamics McGraw-Hill Book Co., New York, 1989.

Shibute CHAIRMAN - BOARD OF STUDIES

Маррі	ing of	Cours	e Out	come			Progra		utcom	es (PC) Prog	gram S	Specifi	С	
CO2		POs													
COs	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	1	1	-	-	-	-	-	-	2			
CO2	3	2	3	3	3	-	-	-	-	-	-	2			
CO3	3	2	3	3	1	-	-	-	-	-	-	2			
CO4	3	3	3	3	2	-	-	-	-	-	-	1			
CO5	3	2	3	3	3	-	-	-	-	-	-	1			
	3	ŀ	1	1	2	Mediu	ım			1	L	.ow			

Formative assessment								
Bloom's Level	Assessment Component	Marks	Total marks					
Remember	Online Quiz	5						
Understand	Tutorial Class / Assignment	5	15					
	Attendance	5						

Summative Assessment										
Bloom's Level		Cont	inuous Asses	ssment		Final				
		Th	Practical's	Examination						
	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Attendance (5)	Rubric based CIA (20)	(Theory) (50)				
Remember	30	20	10		20	40				
Understand	10	20	30		20	40				
Apply	10	10	10		10	20				
Analyze										
Evaluate										
Create										

22PAR104		Advanced Structural Mechanics	L	Т	Р	С
		, ,	3	0	2	4
Nature of Course		Professional core				
Pre requisites		Strength of materials, Aircraft structures				

The course is intended to

- To make students learn important technical aspects on theory of bending, shear flow in open and closed sections, stability problems in structures with various modes of loading and also impart knowledge on how to analyze aircraft structural components under various forms of loading.
- 2. Students will get knowledge on different types of beams and columns subjected to various types of loading and support conditions with particular emphasis on aircraft structural components.
- To impart practical knowledge to the students on calibration of photoelastic materials determination of elastic constant for composite lamina, unsymmetrical bending of beams, determination of shear centre locations for closed and open sections and experimental studies.
- 4. Upon completion of the course, students will acquire experimental knowledge on the unsymmetrical bending of beams, finding the location of shear centre, obtaining the stresses in circular discs and beams using photoelastic techniques, calibration of photo elastic materials.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Estimate the response of statically determinate and indeterminate structures under various loading conditions.	Apply
CO2	Apply the knowledge in strain energy methods to calculate the reactions of various structures.	Apply
CO3	Analyze the column using appropriate methods.	Apply
CO4	Design the structure using different theories of failure.	Apply
CO5	Examine the structural effect due to induced stresses.	Apply

Course contents:

UNIT I Bending of Beams

9

Elementary theory of bending – Introduction to semi-monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections -Box beams — General formula for bending stresses-principal axes method — Neutral axis method.

UNIT II Shear Flow In Open Sections

9

Shear stresses in beams – Shear flow in stiffened panels - Shear flow in thin walled open tubes – Shear centre – Shear flow in open sections with stiffeners.

UNIT III Shear Flow in Closed Sections

Shear flow in closed sections with stiffeners— Angle of twist - Shear flow in two flange and threeflange box beams – Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory - Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures.

UNIT IV Stability Problems

9

9

Stability problems of thin walled structures—Buckling of sheets under compression, shear, bending and combined loads - Crippling stresses by Needham's and Gerard's methods—Sheet stiffener panels-Effective width, Inter rivet and sheet wrinkling failures-Tension field web beams (Wagner's).

UNIT V Analysis of Aircraft Structural Components

9

Loads on Wings – Schrenk"s curve - Shear force, bending moment and torque distribution along the span of the Wing. Loads on fuselage - Shear and bending moment distribution along the length of the fuselage. Analysis of rings and frames.

Total: 45 Periods

Practical

List of experiments

- 1. Constant strength Beams
- 2. Buckling of columns
- 3. Unsymmetrical Bending of Beams
- 4. Shear Centre Location for Open Section
- 5. Shear Centre Location for Closed Section
- 6. Flexibility Matrix for Cantilever Beam
- 7. Combined Loading
- 8. Calibration of Photo Elastic Materials
- 9. Stresses in Circular Disc Under Diametrical Compression Photo Elastic Method
- 10. Vibration of Beams with Different Support Conditions
- 11. Fabrication and Determination of elastic constants of a composite laminate.
- 12. Wagner beam

Total: 30 Periods

References

- 1. E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980.
- 2. Megson, T.M.G; Aircraft Structures for Engineering Students, Edward Arnold, 1995.
- 3. Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993.
- 4. Rivello, R.M., Theory and Analysis of Flight structures, McGraw-Hill, N.Y., 1993.
- 5. Stephen P. Tinnoshenko & S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990.

CHAIRMAN - BOARD OF STUDIES

Ma	Mapping of Course Outcomes (CO) with Program Outcomes (PO) Program Specific Outcomes (PSO)														
200						POs	•						F	PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	1	1	-	-	-	-	_	-	2			
CO2	3	3	3	3	3	-	-	-	-	-	-	2			
CO3	3	2	3	3	1	-	-	-	-	_	-	2			
CO4	3	2	3	3	2	-	-	-	-	-	-	1			
CO5	3	3	3	3	3	-	-	-	-	_	-	1			
	3		High			2	Medium 1 L			.ow					

	Formative assessment						
Bloom's Level	Assessment Component	Marks	Total marks				
Remember	Online Quiz	5					
Understand	Tutorial Class / Assignment	5	15				
	Attendance	5					

	Summative Assessment											
		Final										
Bloom's Level		Th	Practical's	Examination								
	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Attendance (5)	Rubric based CIA (20)	(Theory) (50)						
Remember	30	20	10		20	40						
Understand	10	20	30		20	40						
Apply	10	10	10		10	20						
Analyze												
Evaluate												
Create												

22PAR105	Technical Presentation Seminar		Т	Р	С
		0	0	2	1
Nature of Course	Mandatory courses				
Pre requisites	Undergraduate Project Presentation				

The course is intended to

- 1. To encourage the students to study advanced engineering developments
- 2. To prepare and present technical reports.
- 3. To encourage the students to use various teaching aids such as overhead projectors, PowerPoint presentation and demonstration models.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom'sLevel
CO1	To review, prepare and present technological developments	Understand
CO2	To face the placement interviews	Understand
CO3	To improve the speaking skills	Understand
004	To develop your confidence in handling information, making useful notes, and presenting an argument	Understand
CO5	To improve the research and development Knowledge	Understand

Course contents:

During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for a given time limit. In a session /period student are expected to present the seminar. Each student is expected to present at least twice during the semester and the student is evaluated based on Rubrics. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also. Evaluation is 100% internal.

Total: 30 Periods

CHAIRMAN - BOARD OF STUDIES

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
COs						PC)s							PSO	S
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-			3	2	3	2	3	2	2	-	-	-
CO2	-	-	-	-	-	1	1	3	3	3	2	2	-	-	-
CO3	-	-	-	-	-	3	1	2	2	2	3	3	-	-	-
CO4	-	-	-	-	-	2	2	3	3	2	3	2	-	-	-
CO5	-	-	-	-	-	3	1	3	2	2	3	3	-	-	-
	3		High				2	2	Medi	um		1	L	ow	

Assessment based on Continuous and Final Examination									
Bloom's Level	Continuous Assessr (Attendance –	Final Evamination							
	Rubric based Continuous Assessment [25 marks]	Model Examination [20 marks]	Final Examination [50 marks]						
Remember									
Understand	40	40	40						
Apply	60	60	60						
Analyze									
Evaluate									
Create									

22PAR201		Advanced UAV Design		Т	Р	С
ZZI AKZUI	Advanced UAV Design					3
Nature of Course Profess		Professional core				
Pre requisites		Aircraft structures ,propulsion, avionics				

The course is intended to

- 1. To introduce and develop basic concept of UAV design
- 2. At the end of this course, the student should be able to understand and apply the various concepts related to UAV design.
- 3. The student should be able to design various structural components of the UAV.
- 4. The course enables students to understand and develop UAV avionics system.
- 5. To students familiar the various level UAV airworthiness.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Explore in various stages of UAV design	Apply
CO2	Design and development of UAV structural design	Apply
CO3	Expose in various UAV propulsion system	Apply
CO4	Identify and apply various avionics system	Apply
CO5	Familiar various UAV airworthiness systems	Apply

Course contents:

UNIT I introduction to fixed-wing UAVs

The Stages of Design, Concept Design, Preliminary Design, Detail Design, Manufacturing Design, In-service Design and Decommissioning, the Morphology of a UAV, Main Design Drivers.

UNIT II UAV Structural Design

9

Wings parts design, Fuselages and Tails design, Undercarriages design, Preliminary Structural **Analysis**

UNIT III Propulsion System

9

IC Engines, Electric Motors, Propellers, Engine/Motor Control, Fuel Systems, Batteries and Generators

UNIT IV Airframe Avionics and Systems

Primary Control Transmitter and Receivers, Avionics Power Supplies, Servos, Wiring, Buses, and Boards, Autopilots, Payload Communications Systems, Ancillaries, Resilience and Redundancy

UNITY Airworthiness UAVs

9

Airworthiness, Failure analysis, Systems Engineering, Geometry/CAD Codes, Operational Simulation and Mission Planning, Aerodynamic and Structural Analysis Codes, Design and DecisionViewing, Supporting Databases.

Total: 45 Periods

Textbooks

- 1. Andrew J.Keane, Andras sobester, James P.Scanlan, "Small Unmanned Fixed-wing Aircraft Design a practical approach, John Wiley & Sons Ltd, 2017.
- 2. Richard K. Barnhart, Stephen B. Hottman, Douglas M. Marshall, Eric Shappee, "Introduction To Unmanned Aircraft Systems", CRC Press, 2012

Reference

- 1. Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Roadto Autonomy", Springer, 2007
- 2. Paul G Fahlstrom, Thomas J Gleason, "Introduction to UAV Systems", UAV Systems, Inc, 1998
- 3. 3. Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin Aeronautics Company, 2001

Web references

- 1. https://nptel.ac.in/courses/101/104/101104073/
- 2. https://www.isro.gov.in/applications-of-unmanned-aerial-vehicle-uav-based-remote-sensing-ne-region

Mappir	ng of C	ourse	Outc	omes			rogra es (PS		itcome	s (PO)	Prog	ram S	pecif	ic	
CO-		POs													
COs	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	-	3	1	1	-	-	-	-	-	-	2			Ī
CO2	3	-	3	3	3	-	-	-	-	-	-	2			
CO3	3	-	3	3	1	-	-	-	-	-	-	2			
CO4	3	-	3	3	2	-	-	-	-	-	-	1			
CO5	3	-	3	3	3	-	-	-	-	-	-	1			Ī
	3	F	High		1	2	Mediu	m			1	L	OW	1	

	Formative assessment	ı	
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Sumn	native Assessm	nent			
	Internal A	ssessment Exa				
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60		
Remember	10	10	10	20		
Understand	10	10	10	20		
Apply	30	30	30	60		
Analyze						
Evaluate						
Create						

22PAR202		Aircraft Flight Dynamics	Г	T	Р	С
		, in orant ingine Dynamics	3	0	0	3
Nature of Cours	se	Professional core				
Pre requisites		Basic of Aircraft Power Plants, Elements of aircrafts				

The course is intended to

- 1. To impart knowledge to students on aircraft performance in level, climbing, gliding
- 2. To impart knowledge about accelerated flight modes and also various aspects of stability and control in longitudinal, lateral and directional modes.
- 3. Students will understand the static, dynamic longitudinal, directional and lateral stability and control of airplane, effect of maneuvers.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Evaluate the performance characteristics like aerodynamic forces and power variations of aircraft.	Evaluate
CO2	Interpret the range, endurance, climbing, gliding and various maneuvering performances of an aircraft along with load factor andits limitations.	Analyze
CO3	Illustrate the degrees of freedom and static longitudinal stability attained in aircraft.	Apply
CO4	Correlate the aircraft's lateral and directional stability.	Apply
CO5	Determine the response of aircraft in various oscillatory modes of aircraft stability.	Apply

Course contents:

UNIT I Principles of Flight

9

Physical properties and structure of the atmosphere, International Standard Atmosphere, Temperature, pressure and altitude relationship, Measurement of speed — True, Indicated and Equivalent air speed, Streamlined and bluff bodies, Various Types of drag in airplanes, Drag polar, Methods of drag reduction of airplanes.

UNIT II Aircraft Performance In Level, Climbing and Gliding Flights

8

Straight and level flight, Thrust required and available, Power required and available, Effect of altitude on thrust and power, Conditions for minimum drag and minimum power required, Gliding and Climbing flight, Range and Endurance.

UNIT III Accelerated Flight

9

Take off and landing performance, turning performance, horizontal and vertical turn, Pull up and pull down, maximum turn rate, V-n diagram with FAR regulations.

UNIT IV Longitudinal Stability and Control

10

Degrees of freedom of a system, static and dynamic stability, static longitudinal stability, Contribution of individual components, neutral point, static margin, Hinge moment, Elevator control effectiveness, Power effects, elevator angle to trim, elevator angle per g, maneuver point, stick force gradient, aerodynamic balancing, Aircraft equations of motion, stability derivatives, stability quartic, Phugoid motion.

UNIT V Lateral, Directional Stability and Control

Yaw and side slip, Dihedral effect, contribution of various components, lateral control, aileron control power, strip theory, aileron reversal, weather cock stability, directional control, rudder requirements, dorsal fin, One engine inoperative condition, Dutch roll, spiral and directional divergence, autorotation and spin.

Total: 45 Periods

9

Text books

- 1. Mc Cornick. W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY, 1979.
- 2. Nelson, R.C. "Flight Stability and Automatic Control", McGraw-Hill Book Co., 2004.
- 3. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", John Wiley & Son:, Inc, NY, 1988

References

- 1. Babister, A.W. Aircraft stability and response, Pergamon Press, 1980.
- 2. Clancey, L.J. Aerodynamics, Pitman, 1986.
- 3. Houghton, E.L., and Caruthers, N.B., Aerodynamics for engineering students, Edward Arnold Publishers, 1988.
- 4. Kuethe, A.M., and Chow, C.Y., Foundations of Aerodynamics, John Wiley & Sons, 1982.
- 5. McCormic, B.W., Aerodynamics, Aeronautics & Flight Mechanics John Wiley, 1995.
- 6. Nelson, R.C. Flight Stability & Automatic Control, McGraw-Hill, 1989.
- 7. Perkins C.D., & Hage, R.E. Airplane performance, stability and control, Wiley Toppan, 1974

Mappir	ng of C	ourse	Outo	omes			rogra omes (Outco	mes (l	PO) Pr	ogran	nme S	pecifi	С
						Р	os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	1	-	-	-	-	-	-	1	-			
CO2	3	3	2	2	-	-	-	-	-	-	2	-			
CO3	3	2	2	2	2	-	-	-	-	-	2	2			
CO4	3	2	2	1	2	-	-	-	-	-	2	2			
CO5	3	3	2	2	2	-	-	-	-	-	2	2			
	3	H	High	•	•	2	Mediu	m	•	•	1	L	OW	•	

Formative assessment								
Bloom's Level	Assessment Component	Marks	Total marks					
Remember	Online Quiz	5						
Understand	Tutorial Class / Assignment	5	15					
	Attendance	5	1					

	Sumn	native Assessm	nent	
	Internal A	ssessment Exa		
Bloom's Category	IAE – I (7.5)	IAE - II (7.5)	IAE - III (10)	Final Examination (60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze				
Evaluate				
Create				

CHAIRMAN - BOARD OF STUDIES

22PAR203		Finite Element Method for Aircraft structure Design	L	T	Р	С
			3	0	2	4
Nature of Course		Professional core				
Pre requisites		Basic shapes of elements, 2D, 3D, Boundary conditions				

The course is intended to

- 1. The course is indented to make students learn using Finite element techniques to solve problems related to discrete, continuum and isoparametric elements.
- 2. Introduce solution schemes for static, dynamic and stability problems.
- 3. students will learn the concept of numerical analysis of structural components
- 4. Upon completion of the course, students will be in a position to use Computational fluid dynamics software and Finite Element Analysis software for solving various aeronautical problems.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom'sLevel
CO1	Apply direct stiffness, Rayleigh -Ritz, Galerkin method to solve engineeringproblems and outline the requirements for convergence	Remember
CO2	Solve linear 1D structural rod, beams and frames problems; evaluate theEigenvalues and Eigenvectors for stepped bar and beam	Analyse
CO3	Solve two dimensional Structural problems FEM method	Apply
CO4	Derive shape functions for 4 and 8 node quadrilateral, 6 node triangle elements and apply numerical integration to solve; 1D and 2D; stiffnessintegrations	Evaluate
CO5	Solution schemes familiarize software packages.	Apply

Course contents:

UNIT I Introduction

Review of various approximate methods — Rayleigh-Ritz, Galerkin and Finite Difference Methods - Stiffness and flexibility matrices for simple cases - Basic concepts of finite element method - Formulation of governing equations and convergence criteria.

UNIT II Discrete Elements

Structural analysis of bar and beam elements for static and dynamic loadings. Bar of varying section – Temperature effects. Program Development and use of software package for application of bar and beam elements for static, dynamic and stability analysis.

UNIT III Continuum Elements

9

Plane stress, Plane strain and Axisymmetric problems – CST Element – LST Element. Consistent and lumped load vectors. Use of local co-ordinates. Numerical integration. Application to heat transfer problems. Solution for 2-D problems (static analysis and heat transfer) using software packages.

UNIT IV Isoparametric Elements

Definition and use of different forms of 2-D and 3-D elements. - Formulation of element stiffnessmatrix and load vector. Solution for 2-D problems (static analysis and heat transfer) using software packages.

UNIT V Solution Schemes

9

9

Different methods of solution of simultaneous equations governing static, dynamics and stability problems. General purpose Software packages.

Total: 45 Periods

Practical

List of experiments

- 1. Fatigue analysis of aircraft landing gear using FEM Software.
- 2. Rotor dynamic analysis of jet engine compressor blade using FEM Software
- 3. Rotor dynamic analysis of jet engine Turbine blade using FEM Software
- 4. Fracture Mechanics analysis of aircraft skin structure using FEM Software.
- 5. Random Vibration analysis of Aircraft Wing Structure.
- 6. Weight Optimization of Aircraft fuselage frame structure using FEM Software.
- 7. Stress Optimization of Aircraft fuselage frame structure using FEM Software.
- 8. Heat transfer analysis of Turbine blade using FEM Software.
- 9. Heat transfer analysis of rocket thrust chamber using FEM Software.
- 10. Prediction of Drag and lift on typical aircraft using CFD Software
- 11. Prediction of Drag and lift typical automobile using CFD Software
- 12. Flow simulation of propeller using CFD Software
- 13. Flow simulation of wind Turbine blade using CFD Software
- 14. Combustion simulation of mini jet engine using CFD Software
- 15. Combustion simulation of pulse jet engine using CFD Software
- 16. Acoustic study of jet engine using CFD Software.

Total: 30 Periods

Text books

- 1. Reddy J.N., "An Introduction to Finite Element Method", McGraw Hill, third edition, 2005.
- 2. Tirupathi.R. Chandrapatha and Ashok D. Belegundu, "Introduction to Finite Elements in Engineering", Prentice Hall India, Fourth edition, 2012.

References

- 1. C.S. Krishnamurthy, "Finite Elements Analysis", Tata McGraw-Hill, 1987.
- 2. K.J. Bathe and E.L. Wilson, "Numerical Methods in Finite Elements Analysis", Prentice Hall of India Ltd., 1983.
- 3. Robert D. Cook, David S. Malkus, Michael E. Plesha and Robert J. Witt "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley & Sons, 2002.
- 4. S.S.Rao, "Finite Element Method in Engineering", Butterworth, Heinemann Publishing, 3rd Edition, 1998
- 5. Segerlind, L.J. "Applied Finite Element Analysis", Second Edition, John Wiley and Sons Inc., New York, 1984.
- 6. Tirupathi R. Chandrupatla and Ashok D. Belegundu, Introduction to Finite Elements in Engineering, Prentice Hall, 2002

Mapping	g of Co	ourse	Outco	omes	(CO) v	vith P Outco	rograr mes (nme (PSO)	Outco	mes (PO) P	rograr	nme S	pecifi	С
00-		Pos													
COs	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	3	2	-	-	-	-	-	-	-	1	-			
CO2	2	3	2	-	-	-	-	-	-	-	1	-			
CO3	3	3	2	_	_	-	-	-	-	-	1	-			
CO4	2	2	2	-	-	-	-	-	-	-	-	-			
CO5	3	2	3	-	-	-	-	-	-	-	1	-			
	3	ŀ	High			2	Mediu	ım		•	1		Low		•

Formative assessment								
Bloom's Level	Assessment Component	Marks	Total marks					
Remember	Online Quiz	5						
Understand	Tutorial Class / Assignment	5	15					
	Attendance	5						

	Summative Assessment										
		Cont	inuous Asses	sment		Final					
Bloom's Level		Th	Practical's	Examination							
	IAE - I (7.5)	IAE – II (7.5)	IAE – III (10)	Attendance (5)	Rubric based CIA (20)	(Theory) (50)					
Remember	30	20	10		20	40					
Understand	10	20	30		20	40					
Apply	10	10	10		10	20					
Analyze											
Evaluate											
Create											

22PAR204	Computational Fluid Dynamics for Aerodynamics	L	T	Р	С
	Computational Flata Dynamics for Acroaymanics	3	0	2	4
Nature of Course	Professional core				
Pre requisites	Fluid mechanics, Aerodynamics				

The course is intended to

- 1. Familiar to use various Numerical Technique
- 2. Understand and apply the concepts of various Grid generation
- 3. Understand the various two and three dimensional panels technique
- 4. Understand the various transonic relaxation techniques
- 5. Solve the time dependent solutions of gas dynamic problems.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Familiar in Numerical Technique	Understand
CO2	Apply the concepts of Grid generation	Apply
CO3	Elements of two and three dimensional panels	Understand
CO4	Understand transonic relaxation techniques	Understand
CO5	Solve time dependent problems	Apply

Course contents:

UNIT I Numerical Solutions Of Some Fluid Dynamical Problems

9

Basic fluid dynamics equations, Equations in general orthogonal coordinate system, Body fitted coordinate systems, Stability analysis of linear system. Finding solution of a simple gas dynamic problem, Local similar solutions of boundary layer equations, Numerical integration and shooting technique. Numerical solution for CD nozzle isentropic flows and local similar solutions of boundary layer equations.

UNIT II Grid Generation 9

Need for grid generation – Various grid generation techniques – Algebraic, conformal and numerical grid generation – importance of grid control functions – boundary point control – orthogonality of grid lines at boundaries. Elliptic grid generation using Laplace"s equations for geometries like airfoil and CD nozzle.

UNIT III Panel Methods

9

Elements of two and three dimensional panels, panel singularities. Application of panel methods to incompressible, compressible, subsonic and supersonic flows. Numerical solution of flow over a cylinder using 2-D panel methods using both vertex and source panel methods for lifting and non lifting cases respectively

UNIT IV Transonic Relaxation Techniques

Small perturbation flows, Transonic small perturbation (TSP) equations, Central and backward difference schemes, conservation equations and shock point operator, Line relaxation techniques, Acceleration of convergence rate, Jameson's rotated difference scheme -stretching of coordinates, shock fitting techniques Flow in body fitted coordinate system.

UNIT V Time Dependent Methods

9

9

Stability of solution, Explicit methods, Time split methods, Approximate factorization scheme, Unsteady transonic flow around airfoils. Some time dependent solutions of gas dynamic problems. Numerical solution of unsteady 2-D heat conduction problems using SLOR method

Total: 45 Periods

Practical

- 1. Prediction of Drag and lift on typical aircraft using CFD Software
- 2. Prediction of Drag and lift typical automobile using CFD Software
- 3. Flow simulation of propeller using CFD Software
- 4. Heat transfer analysis of 3d Duct using CFD Software
- 5. Combustion simulation of any engine using CFD Software

Total: 30 Periods

Text books

- 1. John D. Anderson, JR" Computational Fluid Dynamics", McGraw-Hill Book Co., Inc., NewYork, 1995.
- 2. T.J. Chung, Computational Fluid Dynamics, Cambridge University Press, 2002 6. T.K.Bose, "Computation Fluid Dynamics" Wiley Eastern Ltd., 1988

References

- 1. A.A. Hirsch, "Introduction to Computational Fluid Dynamics", McGraw-Hill, 1989.
- 2. C.Y.Chow, "Introduction to Computational Fluid Dynamics", John Wiley, 1979.
- 3. H.J. Wirz and J.J. Smeldern "Numerical Methods in Fluid Dynamics", McGraw-Hill & Co., 1978.

Web References

- 1. https://nptel.ac.in/courses/112/105/112105045/
- 2. https://nptel.ac.in/courses/112/107/112107080/
- 3. https://nptel.ac.in/courses/112/105/112105254/

Mapping o	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
COs		POs									PSOs	;			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	2	2	_	_	-	-	_	2	-	-	-	-
CO2	3	3	2	2	2	-	_	-	_	-	2	_	-	_	_
CO3	3	3	2	2	2	-	_	-	-	-	2	-	-	-	-
CO4	3	3	2	2	2	-	_	-	-	_	2	_	-	-	-
CO5	3	3	2	2	2	-	-	-	-	-	2	-	-	-	-
	3	ŀ	High			-					2	Medi	um		

Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks				
Remember	Online Quiz	5					
Understand	Tutorial Class / Assignment	5	15				
	Attendance	5					

	Summative Assessment										
		Final									
Bloom's		Th	eory		Practical's	Examination					
Level	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Attendance (5)	Rubric based CIA (20)	(Theory) (50)					
Remember	30	20	10		20	40					
Understand	10	20	30		20	40					
Apply	10	10	10		10	20					
Analyze											
Evaluate											
Create											

22PAR205	Technical Presentation Semir	nar	L	Т	Р	С
						1
Nature of Course	Mandatory courses					
Pre requisites	Undergraduate Project Presentati	on				

The course is intended to

- 1. To encourage the students to study advanced engineering developments
- 2. To prepare and present technical reports.
- 3. To encourage the students to use various teaching aids such as overhead projectors, PowerPoint presentation and demonstration models.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom'sLevel
CO1	To review, prepare and present technological developments	Understand
CO2	To face the placement interviews	Understand
CO3	To improve the speaking skills	Understand
CO4	To develop your confidence in handling information, making useful notes, and presenting an argument	Understand
CO5	To improve the research and development Knowledge	Understand

Course contents:

During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for a given time limit. In a session /period students are expected to present the seminar. Each student is expected to present at least twice during the semester and the student is evaluated based on Rubrics. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also. Evaluation is 100% internal.

Total: 30 Periods

CHAIRMAN - BOARD OF STUDIES

Mapping	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
							POs						PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-			3	2	3	2	3	2	2	-	-	-
CO2	-	-	-	-	-	1	1	3	3	3	2	2	-	-	-
CO3	-	-	-	-	-	3	1	2	2	2	3	3	-	-	-
CO4	-	-	-	-	-	2	2	3	3	2	3	2	-	-	-
CO5	-	-	-	-	-	3	1	3	2	2	3	3	-	-	-
	3		High				2	2	Mediu	m		1	Lc	W	

Assessment based on Continuous and Final Examination									
Bloom's Level	Continuous Asses (Attendance								
	Rubric based Continuous Assessment [25 marks]	Model Examination [20 marks]	Final Examination [50 marks]						
Remember									
Understand	40	40	40						
Apply	60	60	60						
Analyze									
Evaluate									
Create									

22PEE301	22PEE301 Research Methodology and Intellectual Property Rights (Common to all Branches of M.E., / M.Tech., Programme)			P 0	C
Nature of Course	Professional Core				
Pre requisites	Basic Research Knowledge				

- 1. To learn the basics of research problems, effective technical writing and developing a research proposal.
- 2. To study about Nature of Intellectual Property and Patent Rights.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Examine research problem formulation.	Apply
CO2	Analyze research related information.	Analyze
CO3	Follow research ethics.	Apply
CO4	Utilize the Patent information and databases	Apply
CO5	Emphasis the need of information about Intellectual Property Right to be promoted among students in general and engineering in particular	Analyze

Course Contents:

Unit I Basics of Research Problem

9

Meaning of research problem – Sources of research problem – Criteria Characteristics of a good research problem – Errors in selecting a research problem – Scope and objectives of research problem, Approaches of investigation of solutions for research problem – Data collection – Analysis – Interpretation – Necessary instrumentations

Unit II Technical Writing and Proposal

9

Effective literature studies approaches – Analysis Plagiarism – Research ethics – Effective technical writing – How to write Report – Paper – Developing Research Proposal – Format of research proposal – Presentation and Assessment by a review committee

Unit III Intellectual Property

9

Nature of Intellectual Property: Patents – Designs –Trade and Copyright. Process of Patenting and Development: Technological research – Innovation – Patenting – Development. International Scenario: International cooperation on Intellectual Property – Procedure for grants of patents – Patenting under PCT.

Unit IV Patent Rights

9

Patent Rights: Scope of Patent Rights – Licensing and transfer of technology – Patent information and databases – Geographical Indications

Unit V Developments in IPR

ć

New Developments in IPR: Administration of Patent System – New developments in IPR – IPR of Biological Systems – Computer Software – Traditional knowledge Case Studies – IPR and IITs.

Reference

Total: 45 Periods

- 1. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 2. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners", 2014.
- 3. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 5. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction", Juta and

- Company Ltd, 2nd Edition 2004.
- 6. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction", 2004.7. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students", 1996.
- 8. Stuart Melville and Wayne Goddard, "Research methodology: anintroduction for science & engineering students", Juta and Company Ltd, 1996.

Мај	ping	of Co	ourse	Outc			s) wit ic Ou					nes (Po	Os) P	rogram	me
0	Cos POs POs 1 2 3 4 5 6 7 8 9 10 11 12													PSO	s
Cos														2	3
CO1	3	3	3	3	3	-	-	-	2	1	1	2	3	1	2
CO2	3	3	3	3	3	-	-	-	2	1	1	2	3	1	2
CO3	3	3	3	3	3	-	-	-	2	1	1	2	3	1	2
CO4	3	3	3	3	3	-	-	-	2	1	1	2	3	1	2
CO5	3	3	3	3	3	-	2 1 1 2							1	2
	3													Low	,

Formative assessment											
Bloom's Level	Assessment Component	Marks	Total marks								
Remember	Online Quiz	5									
Understand	Tutorial Class / Assignment	5	15								
	Attendance	5									

	Summ	ative Assessme	ent		
	Interna	al Assessment E	Final Examination		
Bloom's Category	IAE - I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)	
Remember	10	10	10	20	
Understand	10	10	10	20	
Apply	30	30	30	60	
Analyze					
Evaluate					
Create					

22PAR301	PROJECT WORK PHASE - I	L	Т	Р	С
		0	0	12	6
Nature of course	Employability Enhancement Course				
Pre requisites	Concepts of Research Methodology				

The course is intended to

- 1. Identify a specific problem for the current structural needs of the society.
- 2. Collect information related to the same through detailed review of literature.
- 3. Develop the methodology to solve the identified problem
- 4. Review the methodology and comparing its merits and demerits.
- 5. Experimental work related to the methodology which includes basic concepts , basic tests etc.,

Course Outcomes

On successful completion of the course, students will be able to

CO. No	Course Outcome	Bloom's Level
CO 1	Identify and formulate research problem	Apply
CO 2	Concentrate on literatures related to research problem.	Understand
CO 3	Possess the ability to write a standard technical paper and presentation.	Apply
CO 4	Find the correct procedure for applying patents	Apply
CO 5	Become well versed on patent rights, licensing and transfer of technology.	Understand

Course Contents

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

Total: 180 Periods

Mapping	of Co	urse	Out	com	es (COs)				mme PSO		come	s (POs) P	rogramme S	pecific
00-	POs PSOs														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	3	3	3	3	3	3	3			
CO 2	3	3	3	3	3	3	3	3	3	3	3	3			
CO 3	3	3	3	3	3	3	3	3	3	3	3	3			
CO 4	3	3	3	3	3	3	3	3	3	3	3	3			
CO 5	3	3	3	3	3	3	3	3	3	3	3	3			
	3		Н	igh		2		ı	Medi	ium		1		Low	

	Final Viva					
Review I [10]	Review II [10]	Review III [10]	Publication [10]	Report [10 Marks]	Total [50]	Voce Examination [50 marks]

Marks	100	100	100	10	10	50	50
-------	-----	-----	-----	----	----	----	----

22PAE401	PROJECT WORK PHASE - II	L	Т	Р	С
		0	0	24	12
Nature of course	Employability Enhancement Course				
Pre requisites	Knowledge in Electronics Engineering				

The course is intended to

- 1. Solve the identified problem based on the formulated methodology
- 2. Develop skills to analyze the problem related to area.
- 3. Continue the trials until the expected positive results are obtained
- 4. Preparation of preliminary report and discussion on test results
- 5. Arrive at conclusion and suggestion for future works.

Course Outcomes

On successful completion of the course, students will be able to

CO. No	Course Outcome	Bloom's Level
CO 1	Select different software/ computational/analytical tools.	Apply
CO 2	Design and develop an experimental set up/ equipment/test rig.	Creating
CO 3	Conduct tests on existing setup with equipments and draw logical results.	Analyzing
CO 4	Conclude the results with suitable remarks and suggestion for further extension of work.	Evaluating
CO 5	Present their topic of study to the engineering community.	Apply

Course Contents

The student should continue the phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report and the viva-voce examination by a panel of examiners including one external examiner.

Total: 360 Periods

Mapping o	f Cou	rse (Outco	omes	(CO)s) w	ith P	rogra	amm			•	POs) Pro (PSOs)	gramme	Specific
COs						PSOs									
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	3	3	3	3	3	3	3	3	3			
CO 2	3	3	3	3	3	3	3	3	3	3	3	3			
CO 3	3	3	3	3	3	3	3	3	3	3	3	3			
CO 4	3	3	3	3	3	3	3	3	3	3	3	3			
CO 5	3	3	3	3	3	3	3	3	3	3	3	3			
	3		Н	igh		2		N	lediu	m		1	L	ow	

Continuous Assessment [50 marks]	
----------------------------------	--

	Review I [10]	Review II [10]	Review III [10]	Publication [10]	Report [10 Marks]	Total [50]	Final Viva Voce Examination [50 marks]
Marks	100	100	100	10	10	50	50

I – SEMESTER (Elective-I)

22PARE01	Boundary Layer Theory	L	Т	Р	С
	Dountary Layor Theory	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Fluid Mechanics and Aerodynamics				

Course objectives:

The course is intended to

- 1. Students will acquire knowledge on viscous fluid flow, development of boundary layer for 2D flows.
- 2. Students will understand the behaviour of airflow over bodies with particular emphasis on airfoil sections in the incompressible flow regime.
- 3. Upon completion of the course, students will be in a position to use wind tunnel for pressure and force measurements on various models

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Viscous Flow Equations	Apply
CO2	Laminar Boundary Layer	Apply
CO3	turbulent boundary layer	Apply
CO4	Approximate Solution To Boundary Layer Equations	Apply
CO5	Thermal Boundary Layer	Apply

Course contents:

UNIT I Viscous Flow Equations

9

Navier-Stokes Equations, Creeping motion, Couette flow, Poiseuille flow through ducts, Ekmandrift.

UNIT II Laminar Boundary Layer

9

Development of boundary layer – Estimation of boundary layer thickness, Displacement thickness-Momentum and energy thicknesses for two dimensional flow – Two dimensional boundary layer equations – Similarity solutions - Blasius solution.

UNIT III turbulent boundary layer

9

Physical and mathematical description of turbulence, two-dimensional turbulent boundary layer equations, Velocity profiles – Inner, outer and overlap layers, Transition from laminar to turbulent boundary layers, turbulent boundary layer on a flat plate, mixing length hypothesis.

UNIT IV Approximate Solution to Boundary Layer Equations

9

Approximate integral methods, digital computer solutions – Von Karman – Polhausen method.

UNIT V Thermal Boundary Layer

9

Introduction to thermal boundary layer – Heat transfer in boundary layer - Convective heat transfer, importance of non dimensional numbers – Prandtl number, Nusselt number, Lewis number etc.

Total: 45 Periods

- 1. A.J. Reynolds, "Turbulent flows in Engineering", John Wiley & Sons, 1980.
- 2. Frank White Viscous Fluid flow McGraw Hill, 1998
- 3. H. Schlichting, "Boundary Layer Theory", McGraw-Hill, New York, 1979.
- 4. Ronald L., Panton, "Incompressible fluid flow", John Wiley & Sons, 1984.
- 5. Tuncer Cebeci and Peter Bradshaw, "Momentum transfer in boundary layers", Hemisphere Publishing Corporation, 1977.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)															
000	POs									PSO:	S				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh			-					2	Mediu	ım		

Bloom's Level	Assessment Component	Marks	Total marks		
Remember	Online Quiz	5			
Understand	Tutorial Class / Assignment	5	15		
	Attendance	5			

Summative Assessment									
	Internal A	ssessment Exa	minations						
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyze									
Evaluate									
Create									

22PARE02	Aircraft Design	L	Т	Р	С
	All of all Boolgii	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Flight dynamics, Aircraft Design Project				

The course is intended to

- 1. To impart knowledge to the students on various types of power plant types and also toexpose them principles of aerodynamics and structural design aspects
- 2. To encourage the students to study advanced engineering developments

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Review of Developments in Aviation	Apply
CO2	Power Plant Types and Characteristics	Apply
CO3	Preliminary Design	Apply
CO4	Special Problems	Apply
CO5	Structural Design	Apply

Course contents:

UNIT I Review of Developments in Aviation

9

Categories and types of aircrafts – various configurations – Layouts and their relative merits – strength, stiffness, fail safe and fatigue requirements – Manoeuvering load factors – Gust and manoeuverability envelopes – Balancing and maneuvering loads on tail planes.

UNIT II Power Plant Types and Characteristics

9

Characteristics of different types of power plants – Propeller characteristics and selection – Relative merits of location of power plant.

UNIT III Preliminary Design

9

Selection of geometric and aerodynamic parameters – Weight estimation and balance diagram – Drag estimation of complete aircraft – Level flight, climb, takeoff and landing calculations – range and endurance – static and dynamic stability estimates – control requirements.

UNIT IV Special Problems

9

Layout peculiarities of subsonic and supersonic aircraft – optimization of wing loading to achieve desired performance – loads on undercarriages and design requirements.

UNIT V Structural Design

9

Estimation of loads on complete aircraft and components – Structural design of fuselage, wings and undercarriages, controls, connections and joints. Materials for modern aircraft – Methods of analysis, testing and fabrication.

- 1. A.A. Lebedenski, "Notes on airplane design", Part-I, I.I.Sc., Bangalore, 2005.
- 2. D.P. Raymer, "Aircraft conceptual design", AIAA Series, 1988.
- 3. E. Torenbeek, "Synthesis of Subsonic Airplane Design", Delft University Press, London, 2011.
- 4. E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., U.S.A.,1980.
- 5. G. Corning, "Supersonic & Subsonic Airplane Design", II Edition, Edwards Brothers Inc., Michigan, 2005.
- 6. H.N.Kota, Integrated design approach to Design fly by wire" Lecture notes Interline Pub. Bangalore, 1992.
- 7. Michael Niu, Michael C.Y. Niu, Airframe Stress Analysis & Sizing 1st Edition 1997

Mapping o	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
COs	POs									PSOs	;				
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2			3	2	3	2	3	2	2	-	-	-
CO2	3	2	2	-	-	1	1	3	3	3	2	2	-	-	-
CO3	3	1	2	-	-	3	1	2	2	2	3	3	-	-	-
CO4	3	1	2	-	-	2	2	3	3	2	3	2	-	-	-
CO5	3	2	2	-	-	3	1	3	2	2	3	3	-	-	-
	3	3 High - 2 Medium													

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

Summative Assessment								
	Internal A	ssessment Exa	minations					
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyze								
Evaluate								
Create								

22PARE03	Theory of Elasticity	L	Т	P	С
	incory or Liability	3	0	0	3
Nature of Course					
Pre requisites					

The course is intended to

- 1. To impart knowledge to students on basic governing equations of elasticity, solving of 2D problems in Cartesian and polar coordinates
- 2. To introduce various theories and methods to solve torsion related problems.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Elastic constants	Apply
CO2	Basic Equations of Elasticity	Apply
CO3	2 - D Problems in Cartesian Coordinates	Apply
CO4	2 - D Problems in Polar Coordinates	Apply
CO5	Torsion	Apply

Course contents:

UNIT I Introduction 6

Definition, notations and sign conventions for stress and strain – Stress - strain relations, Strain-displacement relations- Elastic constants.

UNIT II Basic Equations of Elasticity

10

Equations of equilibrium – Compatibility equations in strains and stresses –Boundary Conditions - Saint-Venant's principle - Stress ellipsoid – Stress invariants – Principal stresses in 2-D and 3-D.

UNIT III 2 - D Problems in Cartesian Coordinates

9

Plane stress and plain strain problems - Airy's stress function - Biharmonic equations - 2-D problems - Cantilever and simply supported beams.

UNIT IV 2 - D Problems in Polar Coordinates

12

Equations of equilibrium – Strain – displacement relations – Stress – strain relations – Airy"s stress function – Use of Dunder"s table. - Axisymmetric problems - Bending of Curved Bars - Circular Discs and Cylinders – Rotating Discs and Cylinders - Kirsch, Boussinasque"s and Michell"s problems.

UNIT V Torsion 8

Coulomb"s theory-Navier's theory-Saint Venant's Semi-Inverse method — Torsion of Circular, Elliptical and Triangular sections - Prandtl"s theory-Membrane analogy.

- 1. E. Sechler, "Elasticity in Engineering" John Wiley & Sons Inc., New York, 1980.
- 2. Enrico Volterra and Caines, J.H, Advanced strength of Materials, Prentice Hall, 1991.
- 3. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, 1985.
- 4. Ugural, A.C and Fenster, S.K, Advanced Strength and Applied Elasticity, Prentice hall, 2003
- 5. Wang, C.T. Applied elasticity, McGraw Hill 1993

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)															
COs	POs													PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	2	3	3	3	-	-	-	-	-	-	2				
CO2	3	2	3	1	1	-	-	-	-	-	-	2				
CO3	3	1	3	3	3	-	-	-	-	-	-	2				
CO4	3	2	3	3	1	-	-	-	-	-	-	2				
CO5	3	1	3	3	2	-	-	-	-	-	-	1				
	3	High									2	Mediu	ım			

	Formative assessment										
Bloom's Level	Assessment Component	Marks	Total marks								
Remember	Online Quiz	5									
Understand	Tutorial Class / Assignment	5	15								
	Attendance	5									

Summative Assessment											
	Internal A	ssessment Exa									
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)							
Remember	10	10	10	20							
Understand	10	10	10	20							
Apply	30	30	30	60							
Analyze											
Evaluate											
Create											

22PARE04	Rocketry and Space Mechanics	L	Т	Р	С
ZZI AKLOT	Rookery and opage megnames	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Propulsion				

The course is intended to

- 1. To familiarize the students on fundamental aspects of rocket propulsion
- 2. To familiarize the students on Multi stating of rocket vehicle and spacecraft dynamics.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Orbital Mechanics	Apply
CO2	Satellite Dynamics	Apply
CO3	Rocket Motion	Apply
CO4	Rocket Aerodynamics	Apply
CO5	Staging and Control of Rocket Vehicles	Apply

Course contents:

UNIT I Orbital Mechanics

9

Description of solar system — Kepler's Laws of planetary motion — Newton's Law of Universal gravitation — Two body and Three-body problems — Jacobi's Integral, Librations points - Estimation of orbital and escape velocities

UNIT II Satellite Dynamics

9

Geosynchronous and geostationary satellites- factors determining life time of satellites – satellite perturbations – methods to calculate perturbations- Hohmann orbits – calculation of orbit parameters – Determination of satellite rectangular coordinates from orbital elements

UNIT III Rocket Motion 10

Principle of operation of rocket motor - thrust equation - one dimensional and two dimensional rocket motions in free space and homogeneous gravitational fields - Description of vertical, inclined and gravity turn trajectories determinations of range and altitude - simple approximations to burnout velocity.

UNIT IV Rocket Aerodynamics

9

Description of various loads experienced by a rocket passing through atmosphere – drag estimation – wave drag, skin friction drag, form drag and base pressure drag – Boat-tailing in missiles – performance at various altitudes – conical and bell shaped nozzles – adapted nozzles – rocket dispersion – launching problems.

UNIT V Staging and Control of Rocket Vehicles

8

Need for multi-staging of rocket vehicles – multistage vehicle optimization – stage separation dynamics and separation techniques- aerodynamic and jet control methods of rocket vehicles - SITVC.

- 1. E.R. Parker, "Materials for Missiles and Spacecraft", McGraw-Hill Book Co., Inc., 1982.
- 2. G.P. Sutton, "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 5th Edition, 1986.
- 3. J.W. Cornelisse, "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co., Ltd., London, 1982
- 4. Van de Kamp, "Elements of Astro-mechanics", Pitman Publishing Co., Ltd., London, 1980.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)																		
000	POs														PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	1	2	3	3	3	-	-	-	-	-	-	2						
CO2	3	2	3	1	1	-	-	-	-	-	-	2						
CO3	3	1	3	3	3	-	-	-	-	-	-	2						
CO4	3	2	3	3	1	-	-	-	-	-	-	2						
CO5	3	1	3	3	2	-	-	-	-	-	-	1						
	3	B High									2	Mediu	ım					

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

Summative Assessment											
	Internal A	ssessment Exa									
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)							
Remember	10	10	10	20							
Understand	10	10	10	20							
Apply	30	30	30	60							
Analyze											
Evaluate											
Create											

22PARE05	Experimental Stress Analysis	L	Т	Р	С
ZZI AILUJ	Experimental Stress Analysis	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Strength of Materials				

The course is intended to

- 1. To make the students learn basic principles of operation, electrical resistance strain gauges, photoelasticity and
- 2. To make the students learn interferometric techniques and non destructive methods

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Orbital Mechanics	Apply
CO2	Satellite Dynamics	Apply
CO3	Rocket Motion	Apply
CO4	Rocket Aerodynamics	Apply
CO5	Staging and Control of Rocket Vehicles	Apply

Course contents:

UNIT I Introduction 8

Principle of measurements-Accuracy, sensitivity and range- Mechanical, Optical, Acoustical and Electrical extensometers.

UNIT II Electrical Resistance Strain Gauges

12

Principle of operation and requirements-Types and their uses-Materials for strain gauge- Calibration and temperature compensation-Cross sensitivity-Rosette analysis-Wheatstone bridge-Potentiometer circuits for static and dynamic strain measurements-Strain indicators- Application of strain gauges to wind tunnel balance.

UNIT III Principles of Photoelasticity

q

Two dimensional photo elasticity-Concepts of photoelastic effects-Photoelastic materials-Stress optic law-Plane polariscope-Circular polariscope-Transmission and Reflection type-Effect of stressed model in Plane and Circular polariscope. Interpretation of fringe pattern Isoclinics and Isochromatics.-Fringe sharpening and Fringe multiplication techniques-Compensation and separation techniques-Introduction to three dimensional photoelasticity.

UNIT IV Photoelasticity and Interferometry Techniques

Q

Fringe sharpening and Fringe multiplication techniques-Compensation and separation techniques-Calibration methods –Photo elastic materials. Introduction to three dimensional photoelasticity. Moire fringes – Laser holography – Grid methods-Stress coat

UNIT V Non Destructive Techniques

7

Radiography- Ultrasonics- Magnetic particle inspection- Fluorescent penetrant technique-Eddy current testing- thermography- MICRO FOCUS CT scan.

- 1. A.J. Durelli and V.J. Parks, "Moire Analysis of Strain", Prentice Hall Inc., Englewood Cliffs, New Jersey, 1980.
- 2. G.S. Holister, "Experimental Stress Analysis, Principles and Methods", Cambridge University Press, 1987.
- 3. J Prasad & CGK Nair Non-Destructive Testing and Evaluation of Material, Second Edition Paperback –ISBN-13: 978-0070707030,Amazon,2011
- 4. J.W. Dally and M.F. Riley, "Experimental Stress Analysis", McGraw-Hill Book Co., New York, 1988.
- 5. M. Hetenyi, "Handbook of Experimental Stress Analysis", John Wiley & Sons Inc., New York, 1980.
- 6. P. Fordham, "Non-Destructive Testing Techniques" Business Publications, London, 1988.
- 7. Srinath,L.S., Raghava,M.R., Lingaiah,K. Gargesha,G.,Pant B. and Ramachandra,K. Experimental Stress Analysis, Tata McGraw Hill, New Delhi, 1984
- 8. U. C. Jindal Experimental Stress Analysis, Pearson India, ISBN: 9789332503533, 2012

Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)																	
00-		POs													PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	2	3	3	3	-	-	-	-	-	-	2					
CO2	3	2	3	1	1	-	-	-	-	-	-	2					
CO3	3	1	3	3	3	-	-	-	-	-	-	2					
CO4	3	2	3	3	1	-	-	-	-	-	-	2					
CO5	3	1	3	3	2	-	-	-	-	-	-	1					
	3	High				-					2	Mediu	ım				

Formative assessment								
Bloom's Level	Total marks							
Remember	Online Quiz	5						
Understand	Tutorial Class / Assignment	5	15					
	Attendance	5						

Summative Assessment									
	Internal A	ssessment Exa	minations						
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyze									
Evaluate									
Create									

II- SEMESTER (Elective-II & III)

22PARE11	Theory of Plates and Shells	L	Т	Р	С
ZZI AIXLII	Theory of Flates and Offens	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Strength of materials				

Course objectives:

The course is intended to

- 1. Upon completion of the course, students will get knowledge on the behaviour of plates
- 2. students will get knowledge on shells with different geometry under various types ofloads

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Orbital Mechanics	Apply
CO2	Satellite Dynamics	Apply
CO3	Rocket Motion	Apply
CO4	Rocket Aerodynamics	Apply
CO5	Staging and Control of Rocket Vehicles	Apply

Course contents:

UNIT I Classical Plate Theory

8

Classical Plate Theory – Assumptions – Differential Equations – Boundary Conditions.

UNIT II Plates of Various Shapes

10

Navier's Method of Solution for Simply Supported Rectangular Plates – Levy's Method of Solution for Rectangular Plates under Different Boundary Conditions – Circular plates.

UNIT III Eigen Value Analysis

8

Stability and Free Vibration Analysis of Rectangular Plates with various end conditions.

UNIT IV Approximate Methods

10

Rayleigh – Ritz, Galerkin Methods– Finite Difference Method – Application to RectangularPlates for Static, Free Vibration and Stability Analysis.

UNIT V Shells 9

Basic Concepts of Shell Type of Structures – Membrane and Bending Theories for Circular Cylindrical Shells.

Total: 45 Periods

- 1. Flugge, W. Stresses in Shells, Springer Verlag, 1985.
- 2. Harry Kraus, "Thin Elastic Shells", John Wiley and Sons, 1987.
- 3. T.K.Varadan & K. Bhaskar, "Análysis of plates Theory and problems", Narosha PublishingCo.,
- 4. Timoshenko, S.P. and Gere, J.M., Theory of Elastic Stability, McGraw Hill Book Co. 1986.
- 5. Timoshenko, S.P. Winowsky. S., and Kreger, Theory of Plates and Shells, McGraw Hill BookCo., 1990.

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
000						Р	Os							PSO:	S
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh		•	-					2	Mediu	ım	•	

Formative assessment								
Bloom's Level	Total marks							
Remember	Online Quiz	5						
Understand	Tutorial Class / Assignment	5	15					
	Attendance	5						

Summative Assessment								
	Internal A	ssessment Exa	minations					
Bloom's Category	IAE – I (7.5) IAE – II (7.5)		IAE – III (10)	Final Examination (60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyze								
Evaluate								
Create								

22PARE12	High Temperature Problems in Structures	L	Т	Р	С
	riigii reiiiperatare riezionie in etraetaree	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aircraft structures				

The course is intended to

- 1. Upon completion of the course, students will learn the analysis of bar,
- 2. Students will learn the plane truss and beam under mechanical and thermal loads.

Course outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Temperature Equations & Aerodynamic Heating	Apply
CO2	Thermal Stress Analysis	Apply
CO3	Thermal Stress in Beams, Trusses And Thin Cylinders	Apply
CO4	Thermal Stresses in Plates	Apply
CO5	Special Topics & Materials	Apply

Course contents:

UNIT I Temperature Equations & Aerodynamic Heating

9

Basics of conduction, radiation and convection — Fourier's equation — Boundary and initial conditions — One-dimensional problem formulations — Methods and Solutions. Heat balance equation for idealised structures — Adiabatic temperature — Variations — Evaluation of transient temperature.

UNIT II Thermal Stress Analysis

9

Thermal stresses and strains – Equations of equilibrium – Boundary conditions – Thermoelasticity – Two dimensional problems and solutions – Airy stress function and applications.

UNIT III Thermal Stress in Beams, Trusses And Thin Cylinders

9

Analysis of bar, plane truss and beam under mechanical loads and temperature. Thermal stress analysis of thin cylinder.

UNIT IV Thermal Stresses in Plates

9

Membrane thermal stresses –Rectangular plates – Circular plates – Thick plates with temperature varying along thickness.

UNIT V Special Topics & Materials

9

Thermal bucking – Analysis including material properties variation with temperature.

- 1. A.B. Bruno and H.W. Jerome, "Theory of Thermal Stresses", John Wiley & Sons Inc., New York, 1980
- 2. D.J. Johns, "Thermal Stress Analysis", Pergamon Press, Oxford, 1985.
- 3. N.J. Hoff, "High Temperature effects in Aircraft Structures", John Wiley & Sons Inc., London, 1986.

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
000						Р	Os							PSO:	S
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh		•	-					2	Mediu	ım	•	

Formative assessment								
Bloom's Level	Total marks							
Remember	Online Quiz	5						
Understand	Tutorial Class / Assignment	5	15					
	Attendance	5						

Summative Assessment									
	Internal A	ssessment Exa	minations						
Bloom's Category	IAE – I (7.5) IAE – II (7.5) IAE		IAE – III (10)	Final Examination (60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyze									
Evaluate									
Create									

22PARE13	Fatigue and Fracture Mechanics	L	Т	Р	С		
	i aliguo ana i raotaro mochamos	3					
Nature of Course	Professional Elective						
Pre requisites	Mechanics of machines						

The course is intended to

- 1. To make the students learn about fundamentals of fatigue & fracture mechanics
- 2. Students learn about statistical aspects of fatigue behaviour & fatigue design and testing of aerospace structures.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Fatigue Of Structures	Apply
CO2	Statistical aspects of Fatigue Behaviour	Apply
CO3	Physical aspects of Fatigue	Apply
CO4	Fracture Mechanics	Apply
CO5	Fatigue Design and Testing	Apply

Course contents:

UNIT I Fatigue Of Structures

10

S.N. curves – Endurance limit – Effect of mean stress – Goodman, Gerber and Soderberg relations and diagrams — Notches and stress concentrations — Neuber's stress concentration factors – plastic stress concentration factors – Notched S-N curves.

UNIT II Statistical aspects of Fatigue Behaviour

8

Low cycle and high cycle fatigue – Coffin-Manson"s relation – Transition life – Cyclic Strain hardening and softening – Analysis of load histories – Cycle counting techniques – Cumulative damage – Miner"s theory – other theories.

UNIT III Physical aspects of Fatigue

5

Phase in fatigue life – Crack initiation – Crack growth – Final fracture – Dislocations – Fatigue fracture surfaces.

UNIT IV Fracture Mechanics

15

Strength of cracked bodies – potential energy and surface energy – Griffith"s theory – Irwin – Orwin extension of Griffith"s theory to ductile materials – Stress analysis of cracked bodies – Effect of thickness on fracture toughness – Stress intensity factors for typical geometries.

UNIT V Fatigue Design and Testing

7

Safe life and fail safe design philosophies – Importance of Fracture Mechanics in aerospace structure – Application to composite materials and structures.

- 1. C.G.Sih, "Mechanics of Fracture", Vol.1 Sijthoff and Noordhoff International Publishing Co., Netherland, 1989.
- 2. D.Brock, "Elementary Engineering Fracture Mechanics", Noordhoff International Publishing Co., London, 1994.
- 3. J.F.Knott, "Fundamentals of Fracture Mechanics", Butterworth & Co., (Publishers)Ltd., London, 1983.
- 4. W.Barrois and L.Ripley, "Fatigue of Aircraft Structures", Pergamon Press, Oxford, 1983.

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
COs	POs												PSO:	S	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh		•	-					2	Mediu	ım		•

Formative assessment							
Bloom's Level Assessment Component Marks							
Remember	Online Quiz	5					
Understand	Tutorial Class / Assignment	5	15				
	Attendance	5					

Summative Assessment							
	minations						
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)			
Remember	10	10	10	20			
Understand	10	10	10	20			
Apply	30	30	30	60			
Analyze							
Evaluate							
Create							

22PARE14	Industrial Aerodynamics	L	Т	Р	С
	madotral Acrodynamics	3	0	3	
Nature of Course	Professional Elective				
Pre requisites	Aerodynamics				

The course is intended to

- 1. Upon completion of the course, students will learn about non-aeronautical uses of aerodynamics such as road vehicle, building aerodynamics
- 2. Students will learn about problems of flow induced vibrations.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Fatigue Of Structures	Apply
CO2	Statistical aspects of Fatigue Behaviour	Apply
CO3	Physical aspects of Fatigue	Apply
CO4	Fracture Mechanics	Apply
CO5	Fatigue Design and Testing	Apply

Course contents:

UNIT I Atmosphere

Types of winds, Causes of variation of winds, Atmospheric boundary layer, Effect of terrain on gradient height, Structure of turbulent flows.

UNIT II Wind Energy Collectors

9

Horizontal axis and vertical axis machines, Power coefficient, Betz coefficient by momentum theory.

UNIT III Vehicle Aerodynamics

,

Power requirements and drag coefficients of automobiles, Effects of cut back angle, Aerodynamics of trains and Hovercraft.

UNIT IV Building Aerodynamics

9

Pressure distribution on low rise buildings, wind forces on buildings. Environmental winds in city blocks, Special problems of tall buildings, Building codes, Building ventilation and architectural aerodynamics.

UNIT V Flow Induced Vibrations

9

Effects of Reynolds number on wake formation of bluff shapes, Vortex induced vibrations, Galloping and stall flutter.

- 1. M.Sovran (Ed), "Aerodynamics and drag mechanisms of bluff bodies and roadvehicles", Plenum press, New York, 1978.
- 2. N.G. Calvent, "Wind Power Principles", Charles Griffin & Co., London, 1979.
- 3. P. Sachs, "Winds forces in engineering", Pergamon Press, 1978.
- 4. R.D. Blevins, "Flow induced vibrations", Van Nostrand, 1990.

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
000	POs												PSO:	6	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh			-					2	Mediu	ım		

Formative assessment						
Bloom's Level Assessment Component Marks						
Remember	Online Quiz	5				
Understand	Tutorial Class / Assignment	5	15			
	Attendance	5				

Summative Assessment							
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)			
Remember	10	10	10	20			
Understand	10	10	10	20			
Apply	30	30	30	60			
Analyze							
Evaluate							
Create							

22PARE15	Hypersonic Aerodynamics	L	T	Р	С		
	nyporoomio / torouynamioo	3 0 0					
Nature of Course	Professional Elective						
Pre requisites	Aerodynamics						

The course is intended to

- 1. To make students learn the peculiar hypersonic speed flow characteristics pertaining to flight vehicles
- 2. The approximate solution methods for hypersonic flows.
- 3. The objective is also to impart knowledge on hypersonic viscous interactions and theireffect on aerodynamic heating.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Basics of Hypersonic Aerodynamics	Apply
CO2	Surface Inclination Methods for Hypersonic inviscid Flows	Apply
CO3	Approximate Methods for Inviscid Hypersonic Flows`	Apply
CO4	Viscous Hypersonic Flow Theory	Apply
CO5	Viscous Interactions in Hypersonic Flows	Apply

Course contents:

UNIT I Basics of Hypersonic Aerodynamics

8

Thin shock layers – entropy layers – low density and high density flows – hypersonic flight paths hypersonic flight similarity parameters – shock wave and expansion wave relations of inviscid hypersonic flows.

UNIT II Surface Inclination Methods for Hypersonic inviscid Flows

9

Local surface inclination methods – modified Newtonian Law – Newtonian theory – tangent wedge or tangent cone and shock expansion methods – Calculation of surface flow properties

UNIT III Approximate Methods for Inviscid Hypersonic Flows`

9

Approximate methods hypersonic small disturbance equation and theory – thin shock layer theory – blast wave theory - entropy effects - rotational method of characteristics - hypersonic shock wave shapes and correlations.

UNIT IV Viscous Hypersonic Flow Theory

10

Navier–Stokes equations – boundary layer equations for hypersonic flow – hypersonic boundary layer – hypersonic boundary layer theory and non similar hypersonic boundary layers – hypersonic aerodynamic heating and entropy layers effects on aerodynamic heating – heat flux estimation.

UNIT V Viscous Interactions in Hypersonic Flows

Strong and weak viscous interactions – hypersonic shockwaves and boundary layer interactions – Estimation of hypersonic boundary layer transition- Role of similarity parameter for laminar viscous interactions in hypersonic viscous flow.

Total: 45 Periods

9

- 1. John D. Anderson, Jr, Hypersonic and High Temperature Gas Dynamics, McGraw-HillSeries, New York, 1996.
- 2. John T. Bertin, Hypersonic Aerothermodynamics, 1994 AIAA Inc., Washington D.
- 3. John.D.Anderson, Jr., Modern Compressible Flow with Historical perspective Hypersonic Series.
- 4. William H. Heiser and David T. Pratt, Hypersonic Air Breathing propulsion, AIAAEducation Series.

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)															
000	COs													PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	2	3	3	3	-	-	-	-	-	-	2				
CO2	3	2	3	1	1	-	-	-	-	-	-	2				
CO3	3	1	3	3	3	-	-	-	-	-	-	2				
CO4	3	2	3	3	1	-	-	-	-	-	-	2				
CO5	3	1	3	3	2	-	-	-	-	-	-	1				
	3	High									2	Mediu	ım			

	Formative assessment										
Bloom's Level	Assessment Component	Marks	Total marks								
Remember	Online Quiz	5									
Understand	Tutorial Class / Assignment	5	15								
	Attendance	5									

Summative Assessment											
	Internal A	ssessment Exa	minations								
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)							
Remember	10	10	10	20							
Understand	10	10	10	20							
Apply	30	30	30	60							
Analyze											
Evaluate											
Create											

22PARE16	Computational Heat Transfer	L	Т	Р	С
	Computational Front Transion	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Computational fluid dynamics				

The course is intended to

- 1. To make the students learn to solve conductive, transient conductive, convective problems
- 2. Students learn to solve radiative heat transfer problems using computational methods.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Solution to algebraic equation-Direct Method and Indirect Method- Types of boundary condition.	Apply
CO2	Conductive Heat Transfer	Apply
CO3	Transient Heat Conduction	Apply
CO4	Convective Heat Transfer	Apply
CO5	Radiative Heat Transfer	Apply

Course contents:

UNIT I Introduction

Finite Difference Method-Introduction-Taylor"s series expansion - Discretisation Methods Forward, backward and central differencing scheme for Ist order and second order Derivatives — Types of partial differential equations-Types of errors. Solution to algebraic equation-Direct Method and Indirect Method-Types of boundary condition. FDM - FEM - FVM.

UNIT II Conductive Heat Transfer

9

General 3D-heat conduction equation in Cartesian, cylindrical and spherical coordinates. Computation (FDM) of One – dimensional steady state heat conduction –with Heat generation-without Heat generation- 2D-heat conduction problem with different boundary conditions- Numerical treatment for extended surfaces. Numerical treatment for 3D- Heat conduction. Numerical treatment to 1D-steady heat conduction using FEM.

UNIT III Transient Heat Conduction

9

Introduction to Implicit, explicit Schemes and crank-Nicolson Schemes Computation(FDM) of One —dimensional un-steady heat conduction —with heat Generation-without Heat generation - 2D-transient heat conduction problem with different boundary conditions using Implicit, explicit Schemes. Importance of Courant number. Analysis for I-D,2-D transient heat Conduction problems.

UNIT IV Convective Heat Transfer

(

Convection- Numerical treatment(FDM) of steady and unsteady 1-D and 2-d heat convection-diffusion steady-unsteady problems- Computation of thermal and Velocity boundary layer flows. Upwind scheme. Stream function-vorticity approach-Creeping flow

UNIT V Radiative Heat Transfer

Radiation fundamentals-Shape factor calculation-Radiosity method- Absorption Method- Montacalro method-Introduction to Finite Volume Method- Numerical treatment of radiation enclosures using finite Volume method. Developing a numerical code for 1D, 2D heat transfer problems.

Total: 45 Periods

9

- 1. C.Y.Chow, "Introduction to Computational Fluid Dynamics", John Wiley.
- 2. J.P. Holman, "Heat Transfer", McGraw-Hill Book Co., Inc., New York, 6th Edition, 1991.
- 3. John D. Anderson, JR" Computational Fluid Dynamics", McGraw-Hill Book Co., Inc., New York, 1995.
- 4. John H. Lienhard, "A Heat Transfer Text Book", Prentice Hall Inc., 1981.
- 5. Pletcher and Tennahils "Computational Heat Trasnfer".....
- 6. T.J. Chung, Computational Fluid Dynamics, Cambridge University Press, 2002
- 7. Yunus A. Cengel, Heat Transfer A Practical Approach Tata McGraw Hill Edition, 2003.

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)															
CO2	POs													PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	2	3	3	3	-	-	-	-	-	-	2				
CO2	3	2	3	1	1	-	-	-	-	-	-	2				
CO3	3	1	3	3	3	-	-	-	-	-	-	2				
CO4	3	2	3	3	1	-	-	-	-	-	-	2				
CO5	3	1	3	3	2	-	-	-	-	-	-	1				
	3	F	ligh			-					2	Mediu	ım			

	Formative assessment										
Bloom's Level	Assessment Component	Marks	Total marks								
Remember	Online Quiz	5									
Understand	Tutorial Class / Assignment	5	15								
	Attendance	5									

	Summative Assessment												
	Internal A	ssessment Exa	minations	Final Examination (60)									
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)										
Remember	10	10	10	20									
Understand	10	10	10	20									
Apply	30	30	30	60									
Analyze													
Evaluate													
Create													

22PARE18	Advanced Composite Materials and Structures	Г	Т	Р	С				
2217111210	Advanced Composite materials and Chastares	3	0	0	3				
Nature of Course	Professional Elective								
Pre requisites	Composite Materials and Structures								

The course is intended to

- 1. To impart knowledge to the students on the macro mechanics of composite materials, analysis
- 2. To impart knowledge of manufacturing methods of composite materials and introduce failure theories of composites.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To learn the Application of composite to aircraft structures	Apply
CO2	Apply the knowledge to design of composite materials & structures.	Apply
CO3	Analysis of Laminated Composites	Apply
CO4	To explore the fabrication of fiber	Apply
CO5	To Learn the failure theory and sandwich composite	Apply

Course contents:

Unit I Introduction 10

Classification and characteristics of composite materials - Types of fiber and resin materials, functions and their properties - Application of composite to aircraft structures-Micromechanics Mechanics of materials, Elasticity approaches-Mass and volume fraction of fibers and resins-Effect of voids, Effect of temperature and moisture.

Unit II Macromechanics 10

Hooke's law for orthotropic and anisotropic materials-Lamina stress-strain relations referred to natural axes and arbitrary axes.

Unit III Analysis of Laminated Composites

10

Governing equations for anisotropic and orthotropic plates- Angle-ply and cross ply laminatesAnalysis for simpler cases of composite plates and beams - Interlaminar stresses-Netting analysis.

Unit IV Manufacturing & Fabrication Processes

8

Manufacture of glass, boron and carbon fibers-Manufacture of FRP components- Open mould and closed mould processes. Properties and functions of resins.

Unit V Failure Theory and NDE

-

Failure criteria-Flexural rigidity of Sandwich beams and plates – composite repair- Ultra Sonic Technique - AE technique.

- 1. Autar K. Kaw, Mechanics of Composite Materials, CRC Press LLC, 1997
- 2. B.D. Agarwal and L.J. Broutman, "Analysis and Performance of fiber composites", John-Wiley and Sons, 1990
- 3. G.Lubin, "Hand Book on Fibre glass and advanced plastic composites", Van Nostrand Co., New York, 1989.
- 4. J Prasad & CGK Nair Non-Destructive Testing and Evaluation of Material, Second Edition Paperback –ISBN-13: 978-0070707030, Amazon, 2011
- 5. L.R. Calcote, "Analysis of laminated structures", Van Nostrand Reinhold Co.,1989.
- 6. Michael Chun-Yung Niu Composite Airframe Structures Third Edition Conmilit Publishers 1997
- 7. P. Fordham, "Non-Destructive Testing Techniques" Business Publications, London, 1988.
- 8. R.M. Jones, "Mechanics of Composite Materials", 2nd Edition, Taylor & Francis, 1999

Mapping of (Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO) POS PSOs														
60-	COs														;
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	_	2			
CO4	3	2	3	3	1	-	-	-	-	-	_	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh			-					2	Mediu	ım		

	Formative assessment										
Bloom's Level	Assessment Component	Marks	Total marks								
Remember	Online Quiz	5									
Understand	Tutorial Class / Assignment	5	15								
	Attendance	5									

Summative Assessment								
	Internal A	ssessment Exa	minations					
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyze								
Evaluate								
Create								

22PARE17	Wind Power Engineering	L	T	Р	С
	vina i ower Engineering	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aerodynamics, Flight dynamics				

The course is intended to

- 1. Upon completion of the course, students will learn about aerodynamics
- 2. Students will learn about design and control of wind turbines.

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Wind Energy Power characteristics	Apply
CO2	Wind Characteristics and Resources	Apply
CO3	Aerodynamics of Wind Turbines	Apply
CO4	Wind Turbine Design & Control	Apply
CO5	Environmental and Site Aspects	Apply

Course contents:

UNIT I Introduction to Wind Energy

8

Background, Motivations, and Constraints, Historical perspective, Modern Components, wind turbines geometry and Power characteristics.

UNIT II Wind Characteristics and Resources

8

General characteristics of the wind resource, Atmospheric boundarylayer characteristics, Wind data analysis and resource estimation, Wind turbine energy production estimates using statistical techniques

UNIT III Aerodynamics of Wind Turbines

12

Overview, 1-D Momentum theory, Ideal horizontal axis wind turbine with wake rotation, Airfoils and aerodynamic concepts -Momentum theory and blade element theory General rotor blade shape performance prediction - Wind turbine rotor dynamics

UNIT IV Wind Turbine Design & Control

9

Brief design overview – Introduction -Wind turbine control systems -Typical grid-connected turbine operation -Basic concepts of electricpower- Power transformers -Electrical machines

UNIT V Environmental and Site Aspects

8

Overview- Wind turbine siting - Installation and operation- Wind farms- Overview of wind energy economics-Electromagnetic interference-noise-Land use impacts - Safety

- 1. Emil Simiu & Robert H Scanlan, Wind effects on structures fundamentals and applications to design, John Wiley & Sons Inc New York, 1996.
- 2. IS: 875 (1987) Part III Wind loads, Indian Standards for Building codes.
- 3. N J Cook, Design Guides to wind loading of buildings structures Part I & II,Butterworths, London, 1985
- 4. Tom Lawson Building Aerodynamics Imperial College Press London, 2001

Mapping of	Cours	e Outo	comes	s (CO)			gramn es (PS		tcom	es (PC) Pro	gramn	ne S _l	oecifi	С
600						P	Os							PSOs	;
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh			_					2	Mediu	ım		

Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

Summative Assessment								
	Internal A	ssessment Exa	minations					
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	Final Examination (60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyze								
Evaluate								
Create								

III- SEMESTER (Elective-IV & V)

			Т	Р	C
22PARE21 Aero Elasticity		3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aircraft Structures				

Course objectives:

The course is intended to

- 1. To make the students understand aero elastic phenomena, flutter and to make them solve steady state aero elastic problems.
- 2. Students can understand the theoretical concepts of material behaviour with particular emphasis on their elasticity property.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To understand the aeroelastic phenomena	Apply
CO2	Ability to analysis strip theory and numerical approximations	Apply
CO3	To understand the aerolastic problems	Apply
CO4	Ability to known flutter analysis	Apply
CO5	To Evaluate the aeroelastic problems	Apply

Course contents:

UNIT I Aeroelastic Phenomena

6

Stability versus response problems – The aero-elastic triangle of forces – Aeroelasticity in Aircraft Design – Prevention of aeroelastic instabilities. Influence and stiffness co-efficient, Flexure – torsional oscillations of beam – Differential equation of motion of beam

UNIT II Divergence of a Lifting Surface

10

Simple two dimensional idealisations-Strip theory – Integral equation of the second kind – Exact solutions for simple rectangular wings – 'Semirigid' assumption and approximate solutions – Generalised coordinates – Successive approximations – Numerical approximations using matrix equations

UNIT III Steady State Aerolastic Problems

9

Loss and reversal of aileron control – Critical aileron reversal speed – Aileron efficiency – Semi rigid theory and successive approximations – Lift distribution – Rigid and elastic wings. Tail efficiency. Effect of elastic deformation on static longitudinal stability

UNIT IV Flutter Phenomenon

14

Non-dimensional parameters – Stiffness criteria – Dynamic mass balancing – Dimensional similarity. Flutter analysis – Two dimensional thin airfoils in steady incompressible flow – Quasisteady aerodynamic derivatives. Galerkin method for critical flutter speed – Stability of disturbed motion – Solution of the flutter determinant – Methods of determining the critical flutter speeds – Flutter prevention and control

UNIT V Examples of Aeroelastic Problems

6

Galloping of transmission lines and Flow induced vibrations of transmission lines, tall slender structures and suspension bridges, VIV.

- 1. Y.C. Fung, "An Introduction to the Theory of Aeroelasticity", John Wiley & Sons Inc., New York, 2008.
- 2. R.D.Blevins, "Flow Induced Vibrations", Krieger Pub Co., 2001
- 3. R.L. Bisplinghoff, H.Ashley, and R.L. Halfmann, "Aeroelasticity", II Edition Addison Wesley Publishing Co., Inc., 1996.
- 4. E.G. Broadbent, "Elementary Theory of Aeroelasticity", Bun Hill Publications Ltd., 1986.
- 5. R.H. Scanlan and R.Rosenbaum, "Introduction to the study of Aircraft Vibration and Flutter", Macmillan Co., New York, 1981

Mapping of	Cours	se Ou	tcome	es (CC			gram es (P		utcon	nes (P	O) Pr	ogram	me S	Specif	fic
000	POs									PSOs	;				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	3 High - 2 Medium													

	Formative assessment						
Bloom's Level	Assessment Component	Marks	Total marks				
Remember	Online Quiz	5					
Understand	Tutorial Class / Assignment	5	15				
	Attendance	5					

Summative Assessment							
	Interna	Final Examination					
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)			
Remember	10	10	10	20			
Understand	10	10	10	20			
Apply	30	30	30	60			
Analyze							
Evaluate							
Create							

000 4 0 500	But and Audit of Till and Italy	L	Т	Р	С
22PARE22	Design and Analysis of Turbomachines	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Mechanics of machines, Fluid Mechanics and Machine mechanical vibrations	ery B	asic	of	

The course is intended to

- 1. To design and analyse the performance of Turbo machines for engineering applications
- 2. To understand the energy transfer process in Turbomachines and governing equations of various forms.
- 3. To understand the structural and functional aspects of major components of Turbomachines.
- 4. To design various Turbomachines for power plant and aircraft applications

Course outcomes:

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Understand the design principles of the turbomachines.	Apply
CO2	Analyse the turbomachines to improve and optimize its performance	Apply
CO3	To understand the design concept of combustion chamber.	Apply
CO4	Analysis the axial and radial flow turbines.	Apply
CO5	To understand the designing of gas turbine and jet engine cycles.	Apply

Course contents:

UNIT I Introduction

12

Basics of isentropic flow – static and stagnation properties – diffuser and nozzle configurations - area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams, Euler's equation for turbomachines and its different forms Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and polytrophic

UNIT II Centrifugal and Axial Flow Compressors

9

Centrifugal compressor - configuration and working - slip factor - work input factor - ideal and actual work - pressure coefficient - pressure ratio. Axial flow compressor - geometry and working - velocity diagrams - ideal and actual work - stage pressure ratio - free vortex theory - performance curves and losses

UNIT III Combustion Chamber

9

Basics of combustion, Structure and working of combustion chamber – combustion chamber arrangements - flame stability – fuel injection nozzles, Flame stabilization - cooling of combustion chamber

UNIT IV Axial and Radial Flow Turbines

ç

Elementary theory of axial flow turbines - stage parameters- multi-staging - stage loading and flow coefficients. Degree of reaction - stage temperature and pressure ratios - single and twin spool arrangements - performance, matching of components, Blade Cooling, Radial flow turbines

UNIT V Gas Turbine and Jet Engine Cycles

9

Gas turbine cycle analysis – simple and actual, Reheated, Regenerative and Intercooled cycles for power plants, Working of Turbojet, Turbofan, Turboprop, Ramjet, Scramjet and Pulsejet Engines and cycle analysis – thrust, specific impulse, specific fuel consumption, thermal and propulsive efficiencies.

Total: 45 Periods

- 1. Ganesan V., Gas Turbines, Tata McGraw Hill, 2011.
- 2. Khajuria P.R. and Dubey S.P., Gas Turbines and Propulsive Systems, Dhanpat Rai Publications, 2003.
- 3. Cohen H., Rogers, G F C. and Saravanmotto H I H., Gas Turbine Theory-5th Edition, John Wiely, 2001.
- 4. Austin H. Chruch, Centrifugal pumps and blowers, John wiley and Sons, 1980.
- 5. Hill P G. and Peterson C R., Mechanics and Thermodynamics of Propulsion, Addition-Wesley, 1970.
- 6. C sanady G.T., Theory of Turbo machines, McGraw Hill, 1964.

M	apping	of Co	urse C	Outco				rograr mes (Outco	mes (I	PO) Pro	ogram	me
00-			PSOs											
COs	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	1	1	-	-	2	1	1	-	-	1	2		
CO2	3	2	1	1	-	2	1	1	-	-	1	2		
CO3	3	1	1	1	-	2	1	2	-	-	1	2		
CO4	2	1	1	1	1	2	1	1	-	-	1	1		
CO5	1	1	_	1	1	2	1	2	-	-	1	1		
	3		Hig	gh		2		Med	dium		1		Lo	W

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Summ	ative Assessme	ent	
	Interna	al Assessment E	Examinations	Final Examination
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)
Remember	10	10	10	20
Understand	10	10	10	20
Apply	30	30	30	60
Analyze				
Evaluate				
Create				

000 4 0 500	Helicopter Aerodynamics	L	T	P	С
22PARE23	riencopter Aerodynamics	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aerodynamics, Fluid mechanics and characteristics, boundary concept	/ lay	er		

The course is intended to

- 1. To impart knowledge to the students and fundamental aspects of helicopter aerodynamics, performance of helicopters, stability and control aspects and also to expose them basic and aerodynamic design aspects.
- 2. Students will learn about the basic ideas of evolution, performance and associated stability problems of helicopter.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about rotorcrafts	Apply
CO2	Apply actuator theory of helicopter aerodynamics	Apply
CO3	Evaluate the performance analysis of flight	Analysis
CO4	Understand the flight stability and control	Apply
CO5	To understand design concept of aerodynamics	Apply

Course contents:

UNIT I Introduction 7

Types of rotorcraft – autogyro, gyrodyne, helicopter, Main rotor system – articulated semi rigid, rigid rotors, Collective pitch control, and cyclic pitch control, anti torque pedals.

UNIT II Helicopter Aerodynamics

12

Momentum / actuator disc theory, Blade element theory, combined blade element and momentum theory, vortex theory, rotor in hover, rotor model with cylindrical wake and constant circulation along blade, free wake model, Constant chord and ideal twist rotors, Lateral flapping, Coriolis forces, reaction torque, compressibility effects, Ground effect.

UNIT III Performance

Hover and vertical flight, forward level flight, Climb in forward flight, optimum speeds, Maximum level speed, rotor limits envelope – performance curves with effects of altitude

UNIT IV Stability and Control

(

Helicopter Trim, Static stability – Incidence disturbance, forward speed disturbance, angular velocity disturbance, yawing disturbance, Dynamic Stability.

UNIT V Aerodynamic Design

8

Blade section design, Blade tip shapes, Drag estimation – Rear fuselage upsweep,

- 1. Lecture Notes on "Helicopter Technology", Department of Aerospace Engineering, IIT Kanpur and Rotary Wing aircraft R&D center, HAL, Bangalore, 1998
- 2. Lalit Gupta, "Helicopter Engineering", Himalayan Books, New Delhi, 1996.
- 3. John Fay, "The Helicopter", Himalayan Books, New Delhi, 1995.
- 4. J. Seddon, "Basic Helicopter Aerodynamics", AIAA Education series, Blackwell scientific publications, U.K, 1990.
- 5. A. Gessow and G.C.Meyers, "Aerodynamics of the Helicopter", Macmillan and Co., New York, 1982.

Ма	pping	of Co	urse (Outco	nes (C		th Pro		Outco	omes	(PO) P	rogra	m Spe	cific	
CO-						P	Os						ı	PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	1	1	-	-	-	-	-	-	2			
CO2	3	1	3	3	3	-	-	-	-	-	-	2			
CO3	3	2	3	3	1	-	-	-	-	-	-	2			
CO4	3	2	3	3	2	-	-	-	-	-	-	1			
CO5	3	2	3	3	3	-	-	-	-	-	-	1			
	3		Hi	gh	'	2		Me	edium		1		Lo	w	

	Formative assessment		
Bloom's Level	Assessment Component	Marks	Total marks
Remember	Online Quiz	5	
Understand	Tutorial Class / Assignment	5	15
	Attendance	5	

	Summ	ative Assessme	ent			
	Interna	al Assessment E	Examinations	Final Examination		
Bloom's Category	IAE - I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)		
Remember	10	10	10	20		
Understand	10	10	10	20		
Apply	30	30	30	60		
Analyze						
Evaluate						
Create						

00040504		С			
22PARE24	Experimental Aerodynamics	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aerodynamics, Fluid mechanics and characteristics, bour concept	ndary	/ lay	er	

The course is intended to

- 1. To make the students learn basic wind tunnel measurements and flow visualization methods, flow measurement variables and data acquisition method pertaining to experiments in aerodynamics.
- 2. Students will learn about the measurement of flow properties in wind tunnels and their associated instrumentation.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about basic measurements in fluid mechanics	Apply
CO2	Apply the performance of wind tunnel measurements	Apply
CO3	To understand flow visualization and analogue	Apply
CO4	To Evaluate the performance of measurements	Analysis
CO5	To understand the uncertainty analysis	Apply

Course contents

UNIT I Basic Measurements in Fluid Mechanics

8

Objective of experimental studies – Fluid mechanics measurements – Properties of fluids – Measuring instruments – Performance terms associated with measurement systems – Direct measurements - Analogue methods – Flow visualization –Components of measuring systems – Importance of model studies - Experiments on Taylor-Proudman theorem and Ekman layer – Measurements in boundary layers -

UNIT II Wind Tunnel Measurements

8

Characteristic features, operation and performance of low speed, transonic, supersonic and special tunnels - Power losses in a wind tunnel - Instrumentation and calibration of wind tunnels - Turbulence- Wind tunnel balance - Principle and application and uses - Balance calibration.

UNIT III Flow Visualization and Analogue Methods

10

Visualization techniques – Smoke tunnel – Hele-Shaw apparatus - Interferometer – Fringe-Displacement method – Shadowgraph - Schlieren system – Background Oriented Schliren (BOS) System - Hydraulic analogy – Hydraulic jumps – Electrolytic tank

UNIT IV Pressure, Velocity and Temperature Measurements

10

Pitot-Static tube characteristics - Velocity measurements - Hot-wire anemometry - Constant current and Constant temperature Hot-Wire anemometer - Hot-film anemometry - Laser Doppler Velocimetry (LDV) - Particle Image Velocimetry (PIV) - Pressure Sensitive Paints - Pressure measurement techniques - Pressure transducers - Temperature measurements.

UNIT V Data Acquisition Systems and Uncertainty Analysis

9

Data acquisition and processing – Signal conditioning - Estimation of measurement errors – Uncertainty calculation - Uses of uncertainty analysis.

- 1. Rathakrishnan, E., "Instrumentation, Measurements, and Experiments in Fluids," CRC Press Taylor & Francis, 2007.
- 2. Robert B Northrop, "Introduction to Instrumentation and Measurements", Second Edition, CRC Press, Taylor & Francis, 2006.

IVIC	pping	01 00	ui 36 (Juico	illes (t	-	omes	_		JIII C 3	(r O) F	rogram	Opec	IIIC
CO2			PSOs											
COs	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	1	3	1	1	-	-	-	-	-	-	2		
CO2	3	2	3	3	3	-	-	-	-	-	-	2		
CO3	3	2	3	3	1	-	-	-	-	-	-	2		
CO4	3	1	3	3	2	-	_	-	-	-	_	1		
CO5	3	2	3	3	3	-	-	-	-	-	-	1		
	3	High				2		Ме	dium	1	1		Low	

Formative assessment				
Bloom's Level	Assessment Component	Marks	Total marks	
Remember	Online Quiz	5		
Understand	Tutorial Class / Assignment	5	15	
	Attendance	5		

Summative Assessment							
	Internal Assessment E		Examinations	Final Examination			
Bloom's Category	IAE - I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)			
Remember	10	10	10	20			
Understand	10	10	10	20			
Apply	30	30	30	60			
Analyze							
Evaluate							
Create							

00040505	High Temperature Gas Dynamics		Т	Р	С
22PARE25			0	0	3
Nature of Course	ature of Course Professional Elective				
Pre requisites	Thermal Engineering, Propulsion, Heat and mass transfer				

The course is intended to

- 1. To make the students learn the kinetic theory of hypersonic flows and statistical thermodynamic aspects of flows at very high temperatures and also to make them familiarize the calculations transport properties of gases high temperature.
- 2. Students will learn statistical thermodynamics and the transport properties of high temperature gases.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about basic of real and ideal gases.	Apply
CO2	To understand the statistical thermodynamics	Apply
CO3	To Analysis the Hypersonic flow	Analysis
CO4	To analysis the governing equations of high temperature gases	Analysis
CO5	To understand transport properties in high temperature gases	Apply

Course contents:

UNIT I Introduction 8

Nature of high temperature flows – Chemical effects in air – Real perfect gases – Gibb's free energy and entropy by chemical and non equilibrium – Chemically reacting mixtures and boundary layers.

UNIT II Statistical Thermodynamics

8

Introduction to statistical thermodynamics – Relevance to hypersonic flow - Microscopic description of gases – Boltzman distribution – Cartesian function

UNIT III Kinetic Theory and Hypersonic Flows

(

Chemical equilibrium calculation of equilibrium composition of high temperature air – equilibrium properties of high temperature air – collision frequency and mean free path – velocity and speed distribution functions

UNIT IV Inviscid High Temperature Flows

10

Equilibrium and non – equilibrium flows – governing equations for inviscid high temperature equilibrium flows – equilibrium normal and oblique shock wave flows – frozen and equilibrium flows – equilibrium conical and blunt body flows – governing equations for non equilibrium inviscid flows.

UNIT V Transport Properties in High Temperature Gases

10

Transport coefficients – mechanisms of diffusion – total thermal conductivity – transport characteristics for high temperature air – radiative transparent gases – radiative transfer equation for transport, absorbing and emitting and absorbing gases.

- 1. John D. Anderson, Jr., Hypersonic and High Temperature Gas Dynamics, McGraw-Hill Series, New York, 1996.
- 2. John D. Anderson, Jr., Modern Compressible Flow with Historical perspective, McGraw-Hill Series, New York, 1996.
- 3. John T. Bertin, Hypersonic Aerothermodynamics publishers AIAA Inc., Washington, D.C.,1994.
- 4. T.K.Bose, High Temperature Gas Dynamics,
- 5. William H. Heiser and David T. Pratt, Hypersonic Air breathing propulsion, AIAA Education Series, 1990.

Mapping of (Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
60-						Р	Os						PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	3 High - 2 Me					Mediu	edium							

	Formative assessment									
Bloom's Level	Ioom's Level Assessment Component Marks									
Remember	Online Quiz	5								
Understand	Tutorial Class / Assignment	5	15							
	Attendance	5								

Summative Assessment											
	Interna	al Assessment I	Examinations	Final Examination							
Bloom's Category	IAE - I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)							
Remember	10	10	10	20							
Understand	10	10	10	20							
Apply	30	30	30	60							
Analyze											
Evaluate											
Create											

2004050	High Speed Jet Flows	L	T	Р	С				
22PARE26	riigii Speed Set riows	3	0	0	3				
Nature of Course	Professional Elective								
Pre requisites	Fluid mechanics and machinery, Propulsion, Rocket and space	e pro	opu	lsio	n				

The course is intended to

- 1. To make the students learn about various jet control methods, jet acoustics aspects and free shear layer flow theory pertaining to turbulent jets with high speed
- 2. students will be able to understand various jet control methods, jet acoustics aspects and free shear layer flow theory pertaining to turbulent jets with high speed

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about basic of flow properties.	Apply
CO2	To apply the compressible flow theory	Apply
CO3	To Analysis the performance of jet control	Analysis
CO4	To understand the boundary layer concept	Apply
CO5	To study the types of noise	Apply

Course contents:

UNIT I Introduction

۵

Types of nozzles – over expanded and under expanded flows - Isentropic flow through nozzles–Interaction of nozzle flows over adjacent surfaces – Mach disk - Jet flow – types - Numerical problems.

UNIT II Compressible Flow Theory

9

One-dimensional compressible fluid flow – flow through variable area passage – nozzles and diffusers – normal and oblique shock waves and calculation of flow and fluid properties across the shocks and expansion fans. Interaction of shocks with solid and fluid surface

UNIT III Jet Control

Types of jet control - single jet, multi jet, co-flow jet, parallel flow jet. Subsonic jets- Mathematical treatment of jet profiles- Theory of Turbulent jets- Mean velocity and mean temperature- Turbulence characteristics of free jets- Mixing length- Experimental methods for studying jets and the Techniques used for analysis- Expansion levels of jets- Over expanded, Correctly expanded, Under expanded jets - Control of jets, Centre line decay, Mach number Profile, Iso-Mach (or iso-baric) contours, Shock cell structure in under expanded and over expanded jets, Mach discs.

UNIT IV Boundary Layer Concept

9

Boundary Layer – displacement and momentum thickness- laminar and turbulent boundary layers over flat plates – velocity distribution in turbulent flows over smooth and rough boundaries- laminar sublayer, Shock-boundary layer interactions

UNIT V Jet Acoustics

9

Introduction to Acoustic – Types of noise – Source of generation- Traveling wave solution- standing wave solution – multi-dimensional acoustics -Noise suppression techniques— applications to

problems

Total: 45 Periods

- 1. Ethirajan Rathakrishnan, "Applied Gas Dynamics", John Wiley, NY, 2010.
- 2. Rathakrishnan E., "Gas Dynamics", Prentice Hall of India, New Delhi, 2008.
- 3. Liepmann and Roshko, "Elements of Gas Dynamics", John Wiley, NY, 1963.

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
COo	POs													PSO s	;
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	_	-	-	-	1			
	3	High				-					2	Mediu	ım		

	Formative assessment									
Bloom's Level	Assessment Component	Assessment Component Marks 1								
Remember	Online Quiz	5								
Understand	Tutorial Class / Assignment	5	15							
	Attendance	5								

Summative Assessment											
	Interna	al Assessment E	Final Examination								
Bloom's Category	IAE - I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)							
Remember	10	10	10	20							
Understand	10	10	10	20							
Apply	30	30	30	60							
Analyze											
Evaluate											
Create											

00040505	Combustion in Jet and Rocket Engines	L	Т	Р	С	
22PARE27	Combustion in Jet and Rocket Engines	3	0	0	3	
Nature of Course	Professional Elective					
Pre requisites	Pre requisites Thermodynamics, Propulsion, Rocket and space propulsion					

The course is intended to

- 1. To impart knowledge to the students and basic principles of combustion, types of flames and also make them familiarize the combustion process in gas turbine, ramjet, scram jet and rocket engines.
- 2. Students will learn about the thermodynamics, physics and chemistry of combustion.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about basic of thermodynamics of combustion.	Apply
CO2	To understand the Fundamental laws of transport phenomena	Apply
CO3	To Analysis the Effects of chemical and physical variables on Burning	Analysis
CO4	To understand the Combustion in gas turbine chambers	Apply
CO5	To understand the chemical rocket	Apply

Course contents:

UNIT I Thermodynamics of Combustion

.

Staichiometry – absolute enthalpy- enthalpy of formation- enthalpy of combustion- laws of thermochemistry- pressure and temperature effect on enthalpy of formation, adiabatic flame temperature, chemical and equilibrium products of combustion

UNIT II Physics and Chemistry of Combustion

O

Fundamental laws of transport phenomena, Conservations Equations, Transport in Turbulent Flow, Basic Reaction Kinetics, Elementary reactions, Chain reactions, Multistep reactions, simplification of reaction mechanism, Global kinetics

UNIT III Premixed and Diffused Flames

12

One dimensional combustion wave, Laminar premixed flame, Burning velocity measurement methods, Effects of chemical and physical variables on Burning velocity, Flame extinction, Ignition, Flame stabilizations, Turbulent Premixed flame. Gaseous Jet diffusion flame, Liquid fuel combustion, Atomization, Spray Combustion, Solid fuel combustion

UNIT IV Combustion in Gas Turbine, Ramjet and Scramjet

8

Combustion in gas turbine chambers, recirculation, combustion efficiency, flame holders, subsonic combustion in ramjet, supersonic combustion in scramjet. Subsonic and supersonic combustion controlled by decision mixing and heat convection.

UNIT V Combustion in Chemical Rocket

5

Combustion in liquid propellant rockets, Combustion of solid propellants- application of laminar flame theory to the burning of homogeneous propellants, Combustion in hybrid rockets, combustion instability in rockets

Total: 45 Periods

- 1. D. P. Mishra. "Fundamentals of Combustion", Prentice Hall of India, New Delhi, 2010.
- 2. H. S. Mukunda, "Understanding Combustion", 2nd edition, Orient Blackswan, 2009.
- 3. Kuo K.K. "Principles of Combustion" John Wiley and Sons, 2005.
- 4. Warren C. Strahle, "An Introduction to Combustion", Taylor & Francis, 1993.

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)															
00-	POs													PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	2	3	3	3	-	-	-	-	-	-	2				
CO2	3	2	3	1	1	-	-	_	-	-	_	2				
CO3	3	1	3	3	3	-	-	-	-	-	-	2				
CO4	3	2	3	3	1	-	-	-	-	-	-	2				
CO5	3	1	3	3	2	-	-	-	-	-	-	1				
	3	3 High				-					2	Mediu	ım			

	Formative assessment										
Bloom's Level	Marks	Total marks									
Remember	Online Quiz	5									
Understand	Tutorial Class / Assignment	5	15								
	Attendance	5									

Summative Assessment								
	Interna	al Assessment E	Final Examination					
Bloom's Category	IAE - I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyze								
Evaluate								
Create								

00040500	Propeller Aerodynamics	L	Т	Р	С		
22PARE28	3						
Nature of Course	Professional Elective						
Pre requisites	Thermodynamics, Propulsion, Aerodynamics, Rocket and space propulsion	е					

The course is intended to

- 1. To impart knowledge to the students and basic principles of air screw theory, momentum theory and simulation approach.
- 2. Students will gain knowledge on various Propeller theories and propeller simulations.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about air screw theory.	Apply
CO2	To understand the Ideal efficiency of a propeller	Apply
CO3	To Analysis the Effects of Blade Element Theory	Analysis
CO4	To study and understand the vortex theory	Apply
CO5	To Analysis the simulation approach of propellers	Apply

Course contents:

UNIT I Air Screw Theory

8

Introduction – Non-Dimensional Coefficients – Air screw design – development of airscrew theory. The actuator- disc theory, working states of rotor, optimum rotor, Efficiency of rotor

UNIT II Axial Momentum Theory

10

Rankine-Froude theory- The momentum Equation – Ideal efficiency of a propeller, The general momentum theory- General equations – constant circulation- approximate solution- minimum loss of energy- constant efficiency. Propeller efficiency- Energy equation – approximate solution- efficiency-numerical results

UNIT III Blade Element Theory

9

Primitive Blade Element Theory- Efficiency of the blade element- Blade interface- The vortex system of a propeller- induced velocity- The airfoil characteristics- Multi plane Interference- cascade of airfoils – Airfoil characteristics in a cascade.

UNIT IV Vortex Theory

Propeller blades- Energy and Momentum- Propeller characteristics – The application of the Vortex theory- The effect of solidity and pitch – Approximate method of solution- Effective Aspect ratio of the blades. Propellers of highest efficiency- Minimum loss of energy- Lightly loaded Propellers- Effect of profile drag- The effect of number of blades- Application of Prandtl's Formula.

UNIT V Experimental and Simulation Approach of Propellers

9

Experimental Methods- Wind tunnel interference- Thrust and Torque distribution- Scale effect-Compressibility Effect. Basics of propeller simulations- Domain selection- Grid independency study-Turbulence model investigation.

Total: 45 periods

- 1. Durand, W.F., "Applied Aerodynamics- Volume IV", Stanford University, California, 2010.
- 2. "Modeling Propeller Flow-Fields Using CFD" AIAA 2008-402.
- 3. Seddon, J., "Basic Helicopter Aerodynamics", BSP Professional Books, Oxford London, 2005.
- 4. Kerwin, Justin, "lecture Notes on Hydrofoils and Propellers", Cambridge, 2001.

Mapping of	Cours	se Ou	tcome	es (CC			gram ies (P		utcon	nes (P	O) Pro	ogram	me S	Specif	ic
CO-						Р	Os							PSOs	í
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh			-				•	2	Mediu	ım		

Formative assessment							
Bloom's Level	Assessment Component	Marks	Total marks				
Remember	Online Quiz	5					
Understand	Tutorial Class / Assignment	5	15				
	Attendance	5					

Summative Assessment								
	Interna	al Assessment I	Final Examination					
Bloom's Category	IAE - I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)				
Remember	10	10	10	20				
Understand	10	10	10	20				
Apply	30	30	30	60				
Analyze								
Evaluate								

M.E. Aeronautical Engineering (R-2022)

Create		

	Aircraft Guidance and Control	L	Т	Р	С
22PARE29	All Craft Guidance and Control	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aircraft design, Air traffic control, Elements of aeronautics				

The course is intended to

- 1. To impart knowledge to the students and basic principles of aircraft guidance and control
- 2. Students will learn about longitudinal and lateral autopilot, guidance of missile and launch vehicles.

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To Understand about basic of Guidance and control	Apply
CO2	To understand the need for automatic flight control systems	Apply
CO3	To Analysis the performance of Pitch Orientation Control system	Analysis
CO4	To understand the concept of autopilot	Apply
CO5	To understand the missile and launch vehicle guidance	Apply

Course contents:

UNIT I Introduction

.

Introduction to Guidance and control - definition, Historical background

UNIT II Augmentation Systems

....

Need for automatic flight control systems, Stability augmentation systems, control augmentation systems, Gain scheduling concepts.

UNIT III Longitudinal Autopilot

12

Displacement Autopilot-Pitch Orientation Control system, Acceleration Control System, Glide Slope Coupler and Automatic Flare Control and Flight path stabilization, Longitudinal control law design using back stepping algorithm.

UNIT IV Lateral Autopilot

10

Damping of the Dutch Roll, Methods of Obtaining Coordination, Yaw Orientation Control system, turn compensation, Automatic lateral Beam Guidance. Introduction to Fly-by-wire flight control systems, Lateral control law design using back stepping algorithm.

UNIT V Missile and Launch Vehicle Guidance

12

Operating principles and design of guidance laws, homing guidance laws- short range, Medium range and BVR missiles, Launch Vehicle- Introduction, Mission requirements, Implicit guidance schemes, Explicit guidance, Q guidance schemes

Total: 45 periods

- 1. Collinson R.P.G, 'Introduction to Avionics', Chapman and Hall, India, 1996.
- 2. Stevens B.L & Lewis F.L, 'Aircraft control & simulation', John Wiley Sons, New York, 1992
- 3. Blake Lock, J.H 'Automatic control of Aircraft and missiles ', John Wiley Sons, New York, 1990.
- 4. Nelson R.C 'Flight stability & Automatic Control', McGraw Hill, 1989.
- 5. Garnel.P. & East.D.J, 'Guided Weapon control systems', Pergamon Press, Oxford, 1977.
- 6. Bernad Etikin, 'Dynamic of flight stability and control', John Wiley, 1972.

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
00-						Р	Os							PSOs	;
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh			-					2	Mediu	ım		

	Formative assessment							
Bloom's Level Assessment Component Marks								
Remember	Online Quiz	5						
Understand	Tutorial Class / Assignment	5	15					
	Attendance	5						

Summative Assessment							
	Interna	al Assessment I	Final Examination				
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)			
Remember	10	10	10	20			
Understand	10	10	10	20			
Apply	30	30	30	60			
Analyze							
Evaluate							
Create							

20040500	Avionics	L	Т	Р	С			
22PARE30	Avionics	3	0	0	3			
Nature of Course	Professional Elective							
Pre requisites Control Engineering, Aircraft design, Air traffic control, Elements of aeronautics								

The course is intended to

- 1. To introduce the basic of avionics and its need for civil and military aircrafts
- 2. To impart knowledge about the avionic architecture and various avionics data buses
- 3. To gain more knowledge on various avionics subsystems

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	To introduce the basic of avionics and its need for civil and military aircrafts	Apply
CO2	To impart knowledge about the avionic architecture and various avionics data buses	Apply
CO3	To study about Control and display technologies	Apply
CO4	To gaining knowledge and analysis of navigation systems	Analysis
CO5	To gain more knowledge on various avionics subsystems	Apply

Course contents:

UNIT I Introduction to Avionics

ξ

Need for avionics in civil and military aircraft and space systems – integrated avionics and weapon systems – typical avionics subsystems, design, technologies – Introduction to digital computer and memories.

UNIT II Digital Avionics Architecture

9

Avionics system architecture – data buses – MIL-STD-1553B – ARINC – 420, ARINC-429 – ARINC – 629.

UNIT III Flight Decks and Cockpits

ç

Control and display technologies: CRT, LED, LCD, EL and plasma panel – Touch screen – Direct voice input (DVI) – Civil and Military Cockpits: MFDS, HUD, MFK, HOTAS.

UNIT IV Introduction to Navigation Systems

ξ

Radio navigation – ADF, DME, VOR, LORAN, DECCA, OMEGA, TACAN, ILS, MLS, Hyperbolic navigation systems, Ground Control Approach Systems, Dead reckoning navigation systems, Doppler navigational and inertial navigation– Inertial Navigation Systems (INS) – INS block diagram – Satellite navigation systems – Traffic Alert and Collision Avoidance System (TCAS), GPS

UNIT V Air Data Systems and Auto Pilot

Air data quantities – Altitude, Air speed, Vertical speed, Mach meter, Total air temperature, Mach warning, Altitude warning – Auto pilot – Basic principles, Longitudinal and lateral auto pilot

Total: 45 periods

- 1. Albert Helfrick.D., "Principles of Avionics", Avionics Communications Inc., 2004
- 2. Pallet.E.H.J. "Aircraft Instruments and Integrated Systems", Longman Scientific.2002.
- 3. Spitzer. C.R. "The Avionics Hand Book", CRC Press, 2000
- 4. Collinson.R.P.G. "Introduction to Avionics", Chapman and Hall, 1996.
- 5. Spitzer, C.R. "Digital Avionics Systems", Prentice-Hall, Englewood Cliffs, N.J., U.S.A. 1993
- 6. Middleton, D.H., Ed., "Avionics systems, Longman Scientific and Technical", Longman Group UK Ltd., England, 1989.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)															
00-	POs										PSOs	;			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	-	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	_	-	1			
	3	F	ligh			_					2	Mediu	ım		

Formative assessment								
Bloom's Level	loom's Level Assessment Component Marks		Total marks					
Remember	Online Quiz	5						
Understand	Tutorial Class / Assignment	5	15					
	Attendance	5						

Summative Assessment									
	Interna	Final Examination							
Bloom's Category	IAE – I (7.5)	IAE – II (7.5)	IAE – III (10)	(60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyze									
Evaluate									
Create									

00040504	Wind Tunnel Techniques	L	T	Р	С
22PARE31	wind runner reciniques	3	0	0	3
Nature of Course	Professional Elective				
Pre requisites	Aerodynamics, Elements of aeronautics				

The course is intended to

- 1. To introduce the basic of avionics and its need for civil and military aircrafts
- 2. To impart knowledge about the avionic architecture and various avionics data buses
- 3. To gain more knowledge on various avionics subsystems

Course Outcomes

On successful completion of the course, students will be able to

CO. No.	Course Outcome	Bloom's Level
CO1	Learn the basic concept of Wind tunnel and its principles	Apply
CO2	Understand the various types of wind tunnels and its functions	Apply
CO3	Ability to learn testing of wind tunnel and calibration	Apply
CO4	Acquire the knowledge of measurement techniques.	Analysis
CO5	Learn the advanced types of wind tunnel.	Apply

Course contents:

UNIT I Introduction to Wind Tunnels

9

Principles of Model Testing, Wind Tunnels and its functional parts, Non dimensional numbers, Scale effect, Geometric Kinematic and Dynamic similarities.

UNIT II Types and Functions of Wind Tunnels

Q

Classification and types special problems of testing in subsonic, transonic, supersonic and hypersonic speed regions Layouts

UNIT III Calibration of Wind Tunnels

9

Test section speed, Horizontal buoyancy, Flow angularities, Flow uniformity & turbulence measurements, associated instrumentation – Calibration of subsonic & supersonic tunnels.

UNIT IV Conventional measurement techniques

9

Force measurements and measuring systems, Multi component internal and external balances, Pressure measurement system - Steady and Unsteady Pressure- single and multiple measurements - Velocity measurements, Intrusive and Non-intrusive methods, Particle image velocimetry.

UNIT V Advanced wind tunnel techniques

9

Intake tests store carriage and separation tests, unsteady force and pressure measurements, wind tunnel model design. Hot wire anemometer working and principle

Total: 45 periods

- 1. Rae, W.H. and Pope, A., "Low Speed Wind Tunnel Testing", Wiley India Pvt Ltd; Third edition (16 March 2010) ISBN-13: 978-8126525683
- 2. Lecture course on Advanced Flow diagnostic techniques 17-19 September 2008 NAL, Bangalore
- 3. Pope, A., and Goin, L., "High Speed Wind Tunnel Testing", Krieger Pub Co 2002.
- 4. NAL-UNI Lecture Series 12:" Experimental Aerodynamics", NAL SP 98 01 April 1998

Mapping of	Mapping of Course Outcomes (CO) with Programme Outcomes (PO) Programme Specific Outcomes (PSO)														
CO2	POs										PSOs	;			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	3	-	-	-	-	-	-	2			
CO2	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	1	3	3	3	-	-	-	-	_	-	2			
CO4	3	2	3	3	1	-	-	-	-	-	-	2			
CO5	3	1	3	3	2	-	-	-	-	-	-	1			
	3	F	ligh			-					2	Mediu	ım		

Formative assessment							
Bloom's Level	loom's Level Assessment Component Marks						
Remember	Online Quiz	5					
Understand	Tutorial Class / Assignment	5	15				
	Attendance	5					

Summative Assessment									
	Interna	al Assessment I	Final Examination						
Bloom's Category	IAE – I (7.5) IAE – II (7.5		IAE – III (10)	(60)					
Remember	10	10	10	20					
Understand	10	10	10	20					
Apply	30	30	30	60					
Analyze									
Evaluate									
Create									